Abstract:
A flexible guide for a rotating resonator mechanism, in particular of a horological movement, the guide including a fixed support, an element that is capable of moving relative to the fixed support, at least one main flexible blade allowing the movable element to move relative to the fixed support by bending the one or more main flexible blades via a rotary motion about a centre of rotation, the flexible guide being arranged substantially in one plane, and includes at least one translation table joined to one end of the main flexible blade, the main flexible blade and the translation table forming a pair connected to the fixed support, to the movable element, or to an intermediate movable part, such that the translation table is configured to move in translation at least in part under the effect of the bending of the main flexible blade.
Abstract:
An oscillator includes a resonator, which has an inertial mass returned by an elastic return and carries entry and exit pallets cooperating with teeth of an escape wheel each provided with a magnet. Each pallet includes a magnetic arrangement, with an annular sector, centred on the axis of oscillation of the resonator, defining a first magnetic barrier area extending above and/or below a mechanical pallet-stone of the entry pallet or exit pallet, over the entire length of this mechanical pallet-stone acting as support for the teeth during the supplementary arc, in order to form a magnetic cylinder escapement mechanism.
Abstract:
A mechanical timepiece oscillator includes, between a support and an inertial element, a flexure bearing with flexible strips crossed in projection, including, superposed, an upper level that includes, between an upper support and an upper inertial element, an upper primary strip in a first direction and an upper secondary strip in a second direction, and a lower level that includes, between a lower support and a lower inertial element, a lower primary strip in the first direction and a lower secondary strip in the second direction. The upper level and lower level include, between the support and the upper or respectively lower support, a translational table with an elastic connection along one or two axes of freedom in the oscillation plane, of lower stiffness than that of each flexible strip.
Abstract:
A mechanical timepiece oscillator including, between a first element and a second inertial element, more than two distinct flexible strips returning the inertial element to a rest position in an oscillation plane, wherein the projections of these strips cross each other, at a point, through which passes the axis of pivoting of the second solid inertial element, and the height to thickness aspect ratio is less than 10 for each strip.
Abstract:
A mechanical timepiece oscillator including, between a first element and a second inertial element, more than two distinct flexible strips returning the inertial element to a rest position in an oscillation plane, wherein the projections of these strips cross each other, at a point, through which passes the axis of pivoting of the second solid inertial element, and the height to thickness aspect ratio is less than 10 for each strip.
Abstract:
An isochronous pivot for a resonator including two flexible strips joining attachment points of a first and a second element, defining two strip directions, and a pivot axis, at the intersection of their projections or at their intersection, each strip having a free length between its attachment points, and an axial distance between the pivot axis and the attachment point thereof farthest from the axis, the attachment point ratio X=D/L being greater than one for each strip, the strip directions defining with the axis a first apex angle whose value in degrees includes between f1(X)=108+67/(10X−6), and f2(X)=113+67/(10X−6).
Abstract:
The invention concerns a device for regulating the relative angular speed between a magnetic structure and a resonator magnetically coupled to each other and forming an oscillator which defines a magnetic escapement. The magnetic structure includes at least one annular magnetic path at least partially formed of a magnetic material of which one physical parameter is correlated to the magnetic potential energy of the oscillator, the magnetic material being arranged along the annular path so that the physical parameter varies angularly in a periodic manner. The annular path includes, in each angular period, an area of accumulation of magnetic potential energy in the oscillator, radially adjacent to an impulse area. The magnetic material, in each accumulation area, is arranged so that the physical parameter of said magnetic material gradually increases angularly or gradually decreases angularly.