Abstract:
An airfoil having one-sided pedestals is disclosed. The airfoil may define various cavities, such as an inflow feed cavity, an impingement cavity, and an outflow cavity. The various cavities may be connected by crossover sections such as an inflow crossover section and an outflow crossover section. Cooling air may be conducted into the inflow feed cavity, out of the inflow feed cavity through an inflow crossover section into an impingement cavity, and through an impingement cavity. The cooling air may be conducted out of the impingement cavity and into an outflow cavity through an outflow crossover section. Various cavities may include one-wall pedestals. One-wall pedestals may be structures extending from a wall of a cavity into the void of the cavity, whereupon cooling air may impinge, effectuating convective cooling.
Abstract:
A rotor blade comprises a root section, an airfoil section, a leading edge cooling cavity, an intermediate cooling cavity, and a trailing edge cooling cavity. The leading edge, intermediate, and trailing edge cooling cavities each extend spanwise through the airfoil section from a coolant inlet passage in the root section, and each terminate proximate the airfoil tip.
Abstract:
An airfoil for use in a gas turbine engine is provided. The airfoil having: a pressure surface and a suction surface each extending axially from a leading edge to a trailing edge of the airfoil, at least one of the pressure surface, the suction surface, the leading edge and the trailing edge terminating at an edge of a tip section of the airfoil; a plurality of internal cooling channels located within the airfoil; and at least one cooling hole in fluid communication with at least one of the plurality of internal cooling channels, wherein the at least one cooling hole is aligned with an opening or diffuser that extends directly from the at least one cooling hole and wherein the opening or diffuser is formed in and extends through the edge of the tip section of the airfoil.
Abstract:
An assembly for a gas turbine that engine includes a fan section. A turbine section is configured to drive the fan section. The turbine section includes a rotor hub with a rotor lug. A heat shield engages the rotor lug. The heat shield and the rotor lug define a cooling passage.
Abstract:
A rotor disk is provided. The rotor disk may comprise a disk lug and a trench. The disk lug may be fixed to a distal surface of the rotor disk. The trench may be disposed on a surface of the disk lug. The trench may extend radially inwards from a distal surface of the disk lug. The trench may be configured to at least partially define a flow path by which cooling air may reach a distal surface of the disk lug in order to provide disk lug cooling.
Abstract:
An assembly according to an exemplary aspect of the present disclosure includes, among other things, a disk, a cover plate providing a cavity at a first axial side of the disk, a passageway including an inlet provided by a notch in at least one of the disk and the cover plate in fluid communication with the cavity, and the passageway extending from the inlet to an exit provided at a second axial side of the disk opposite the first axial side, the exit in fluid communication with the inlet, and the passageway configured to provide fluid flow from the cavity to the exit.
Abstract:
A rotor blade comprises a root section, an airfoil section, a leading edge cooling cavity, an intermediate cooling cavity, and a trailing edge cooling cavity. The leading edge, intermediate, and trailing edge cooling cavities each extend spanwise through the airfoil section from a coolant inlet passage in the root section, and each terminate proximate the airfoil tip.
Abstract:
A damper pin for coupling platforms of adjacent turbine blades includes a first flat longitudinal end region, a second flat longitudinal end region and a reduced cross sectional area. The reduced cross sectional area is separated from the first flat longitudinal end region by a first main body region and the reduced cross sectional area is separated from the second flat longitudinal end region by a second main body region. The cross sectional area of the reduced cross sectional area is less than the cross sectional area of each of the first and second main body regions.
Abstract:
An airfoil comprises pressure and suction surfaces extending from a root section to a tip section of the airfoil. The airfoil also comprises a leading edge and trailing edge defining a chord length therebetween. A tip shelf is formed along the tip section between the pressure surface and a tip shelf wall, the tip shelf wall being spaced between the pressure surface and the suction surface. A squealer pocket is formed along the tip section between the tip shelf wall and a squealer tip wall extending from the suction surface. The tip shelf extends from within 10% of the cord length measured from the leading edge to within 10% of the chord length measured from the trailing edge. The squealer pocket extends from within 10% of the chord length measured from the leading edge to terminate less than 85% of the chord length measured from the trailing edge.
Abstract:
An assembly according to an exemplary aspect of the present disclosure includes, among other things, a disk, a cover plate providing a cavity at a first axial side of the disk, a passageway including an inlet provided by a notch in at least one of the disk and the cover plate in fluid communication with the cavity, and the passageway extending from the inlet to an exit provided at a second axial side of the disk opposite the first axial side, the exit in fluid communication with the inlet, and the passageway configured to provide fluid flow from the cavity to the exit.