摘要:
Techniques for Inter-Process Communication (IPC) in a more secure manner are disclosed. A communication component operating outside of an operating system can obtain operating-system data pertaining to processes that also operate outside of the operating system. The operating-system data can be more reliable than information that may have been provided by the processes, thereby allowing more secure IPC and consequently a more secure computing environment and/or system. A communication component can also be operable to make control decisions regarding the IPC data (e.g., IPC messages) based on the information provided and/or originated by the operating system (or operating-system data) and/or effectively provide the operating-system data pertaining to a sender process to its intended recipient process. A recipient process can also be operable to obtain the operating-system data pertaining to a sender process. Moreover, a recipient process can make control decisions regarding the IPC data originated by the sender process based on the operating-system data effectively provided and/or originated by the operating system rather than the sender process, thereby allowing the recipient process to make control decisions based on information provided by a more reliable (e.g., Trusted) source.
摘要:
In one embodiment, cryptographic transformation of a message is performed by first performing a table initiation phase to populate a data structure. Then, a first random number multiplied by a public key is added to each value in the data structure, in modulo of a second random number multiplied by the public key. Then an exponentiation phase is performed, wherein each modular multiplication and square operation in the exponentiation phase is performed in modulo of the second random number multiplied by the public key, producing a result. Then the result of the exponentiation phase is reduced in modulo of the public key. The introduction of the random numbers aids in the prevention of potential security breaches from the deduction of operands in the table initiation phase by malicious individuals.
摘要:
Methods and devices for increasing or hardening the security of data stored in a storage device, such as a hard disk drive, are described. A storage device provides for increased or hardened security of data stored in hidden and non-hidden partitions of a storage medium in the device. An algorithm may be utilized for deriving a key that is used to encrypt or decrypt text before it is read from or written to the hard disk. The algorithm accepts as input a specific media location factor, such as an end address or start address of the block where the text is being read from or written to, and a secret key of the storage component. The output of the algorithm is a final key that may be used in the encryption and decryption process. Thus, in this manner, the final key is dependent on the location of the block where the data is being written or read, thereby making it more difficult to tamper with the data, which may be stored in a hidden or non-hidden partition of a hard disk.
摘要:
In one embodiment, a multi-stakeholder environment is controlled by first assigning a first domain to a first stakeholder and a second domain to a second stakeholder. Then a first access policy is defined for the first domain and access is restricted to the first domain for the second stakeholder according to the first access policy. In another embodiment, an access request is handled in a multi-stakeholder environment by first receiving parameters forwarded by hooks in system call functions in a kernel of the multi-stakeholder environment, wherein the parameters contain information about a first stakeholder requesting access to a domain corresponding to a second stakeholder. Then it is determined whether to allow the first stakeholder to access the domain based at least partially upon security settings corresponding to the domain.
摘要:
Improved techniques for obtaining authentication identifiers, authentication, and receiving services are disclosed. Multiple devices can be used for receiving service from a servicing entity (e.g., Service Providers). More particularly, a first device can be used to authenticate a first entity (e.g., one or more persons) for receiving services from the servicing entity, but the services can be received by a second device. Generally, the first device can be a device better suited, more preferred and/or more secure for authentication related activates including “Identity Management.” The second device can be generally more preferred for receiving and/or using the services. In addition, a device can be designated for authentication of an entity. The device releases an authentication identifier only if the entity has effectively authorized its release, thereby allowing “User Centric” approaches to “Identity Management.” A device can be designated for obtaining authentication identifiers from an identity assigning entity (e.g., an Identity Provider). The authentication identifiers can be used to authenticate an entity for receiving services from a servicing entity (e.g., a Service Provider) that provides the services to a second device. The same device can also be designated for authentication of the entity. The device can, for example, be a mobile phone allowing a mobile solution and providing a generally more secure computing environment than the device (e.g., a Personal Computer) used to receive and use the services.
摘要:
In one embodiment, cryptographic transformation of a message is performed by first performing a table initiation phase. Then an exponentiation phase is performed, wherein the exponentiation phase includes two or more parsing steps, wherein each of the parsing steps includes parsing a part of a cryptographic key into a window of size n, wherein n is a difficult to predict number.
摘要:
Executable computer code sections can be stored in the same section of secondary memory (e.g., instruction cache) during execution time in order to reduce the observable changes to the state of the secondary memory, thereby enhancing the security of computing systems that use secondary memory in addition the primary (main) memory to support execution of computer code. In addition, size of code sections can also be effectively adjusted so that code sections that are mapped to the same section of the secondary memory appear to have the same size, thereby further reducing the observable changes to the state of the secondary memory. As a result, the security of computing system can be further enhanced. It should be noted that code sections can be effectively relocated to cause them to map to the same section of secondary memory. It will be appreciated that mapping code sections considered to be critical to security can be especially useful to improving security. For example, codes sections considered to be critical to security can be identified and effectively mapped to the same section of an instruction cache (I-cache) as provided in more modern computing systems in order to improve the efficiency of execution, thereby allowing use of the I-cache in a more secure manner.
摘要:
Executable computer code sections can be effectively evicted from secondary memory (e.g., instruction cache) during execution time in order to reduce the observable changes to the state of the secondary memory, thereby enhancing the security of computing systems that use secondary memory in addition the primary (main) memory to support execution of computer code. In particular, codes sections considered to be critical to security can be identified and effectively mapped to the same section of an instruction cache (I-cache) as provided in more modern computing systems in order to improve the efficiency of execution, thereby allowing use of the I-cache in a more secure manner.
摘要:
Methods and systems for regulating services provided by a first computing entity, such as a server, to a second computing entity, such as a client are described. A first entity receives a request for a service from a second entity over a network. The first entity determines whether the second entity has a trusted agent by examining an attestation report from the second entity. The first entity transmits a message to the second entity. The trusted agent on the second entity may receive the message. A response is created at the second computing entity and received at the first entity. The first entity then provides the service to the second entity. The first entity may transmit an attestation challenge to the second entity and in response receives an attestation report from the second entity.
摘要:
In an embodiment of the present invention, the ability for a user or process to set or modify affinities is restricted in order to method for control a multi-processor environment. This may be accomplished by using a reference monitor that controls a process' capability to retrieve and set its or another process' affinity. This aids in the prevention of security breaches.