Character recognition apparatus that subdivides a character into
subregions to obtain feature vectors
    21.
    发明授权
    Character recognition apparatus that subdivides a character into subregions to obtain feature vectors 失效
    字符识别装置,将字符细分成子区域以获得特征向量

    公开(公告)号:US5703963A

    公开(公告)日:1997-12-30

    申请号:US332120

    申请日:1994-10-31

    CPC分类号: G06K9/48 G06K2209/01

    摘要: A character recognition apparatus is provided which, even when there occurs a local positional deviation of a character to be recognized, can stably recognize the character with high accuracy. For each contour point of a character image, a contouring direction code imparting unit 15 obtains a contouring direction code in which a contouring line direction of the character is quantized in four directions. A contouring direction code frequency calculation unit 16 calculates the frequency of each contouring direction code for each subregion of the character image. A contouring direction code density calculation unit 17 calculates the density of the contouring direction codes of each subregion, by using the frequency of the direction codes and the size of the respective subregion. A contouring direction code space blurring unit 18 conducts a weighted addition on each of the obtained contouring direction codes by adding, with a predetermined weight coefficient, the contouring direction code densities of neighbor subregions which are adjacent to the respective subregion with the subregion as the center and in a direction perpendicular to that of each of the contouring direction codes.

    摘要翻译: 提供一种字符识别装置,即使当发生要识别的字符的局部位置偏差时,也能够以高精度稳定地识别字符。 对于字符图像的每个轮廓点,轮廓方向代码赋予单元15获得在四个方向上量化字符的轮廓线方向的轮廓方向代码。 轮廓方向代码频率计算单元16计算字符图像的每个子区域的每个轮廓方向代码的频率。 轮廓方向代码密度计算单元17通过使用方向代码的频率和各个子区域的大小来计算每个子区域的轮廓方向代码的密度。 轮廓方向代码空间模糊单元18通过以预定的权重系数加上以该子区域为中心与各个子区域相邻的相邻子区域的轮廓方向代码密度,对获得的轮廓方向代码进行加权相加 并且在垂直于每个轮廓方向代码的方向上。

    Recognition unit and recognition apparatus
    22.
    发明授权
    Recognition unit and recognition apparatus 失效
    识别单元和识别装置

    公开(公告)号:US5542005A

    公开(公告)日:1996-07-30

    申请号:US403126

    申请日:1995-03-13

    IPC分类号: G06N3/04 G06K9/62

    CPC分类号: G06K9/6281 G06N3/04

    摘要: A recognition apparatus is provided with a plurality of recognition units organized in a multilayered hierarchical structure. Each of the recognition units includes a signal input section, a quantizer for performing a quantization according to a signal inputted from the signal input section, and a path selecting section for performing a selection of paths according to an output from the quantizer. The path selecting section includes a path input section having at least one path input terminal, a path output section having at least one path output terminal, a load distribution selecting section for selecting a load distribution, and a load setting section for changing the strength of connection between the path input terminal and the path output terminal according to the output of the quantizer by the use of the load distribution selected by the load distribution selecting section.

    摘要翻译: 识别装置设置有以多层次分层结构组织的多个识别单元。 每个识别单元包括信号输入部分,用于根据从信号输入部分输入的信号进行量化的量化器,以及路径选择部分,用于根据量化器的输出执行路径的选择。 路径选择部分包括具有至少一个路径输入端的路径输入部分,具有至少一个路径输出端的路径输出部分,用于选择负载分布的负载分配选择部分和用于改变负载分配的负载分配选择部分 根据量化器的输出,通过使用由负载分配选择部选择的负载分布,在路径输入端子与路径输出端子之间进行连接。

    Object recognition apparatus using a hierarchical network of recognition
units
    23.
    发明授权
    Object recognition apparatus using a hierarchical network of recognition units 失效
    使用识别单元的分层网络的对象识别装置

    公开(公告)号:US5530886A

    公开(公告)日:1996-06-25

    申请号:US395200

    申请日:1995-02-27

    IPC分类号: G06K9/66 G06N3/04

    CPC分类号: G06K9/66 G06N3/04

    摘要: A recognizing and judging apparatus for a learning and recognizing processing to be effectively performed in a short period of time, the apparatus including a plurality of recognition units in a multi-layered hierarchical network structure with one or more path output terminals of the recognition units of an upper layer being connected with one or more path input terminals of the recognition units of a lower layer. The recognition unit comprises a vector signal input structure for inputting a plurality of input signals for showing characteristics of an object to be recognized, a path signal transmitting information computing structure for converting an input signal vector from the vector signal input structure into a path signal transmitting information and a path signal transmitting structure having one or more path input terminals for inputting a path signal and one or more path output terminals for outputting the path signal to transmit the path signal from the path input terminals to the path output terminals according to the path signal transmitting information.

    摘要翻译: 一种用于在短时间内有效执行的学习和识别处理的识别和判断装置,该装置包括多层分层网络结构中的多个识别单元,其中识别单元的一个或多个路径输出端 上层与下层的识别单元的一个或多个路径输入端连接。 识别单元包括用于输入多个用于显示被识别对象的特性的输入信号的矢量信号输入结构,用于将来自矢量信号输入结构的输入信号矢量转换为路径信号发送的路径信号发送信息计算结构 信息和路径信号发送结构,其具有用于输入路径信号的一个或多个路径输入端子和用于输出路径信号的一个或多个路径输出端子,以根据路径从路径输入端口将路径信号传输到路径输出端子 信号发送信息。

    Learning machine with a hierarchial structure without mutual connections
within levels thereof
    24.
    发明授权
    Learning machine with a hierarchial structure without mutual connections within levels thereof 失效
    具有层次结构的学习机器,其级别内没有相互连接

    公开(公告)号:US5295228A

    公开(公告)日:1994-03-15

    申请号:US754517

    申请日:1991-09-04

    IPC分类号: G06F15/18 G06N3/08 G06N99/00

    CPC分类号: G06N3/084

    摘要: A learning machine has plural multiple-input single-output signal processing circuits connected in a hierarchical structure. The learning machine sets a threshold value, which is a evaluation standard for change in weight coefficients, high during the early part of the learning process and enables rough learning to progress without changing the weight coefficients for those multiple-input single-output signal processing circuits for which errors are sufficiently small. On the other hand, the learning machine gradually reduces the threshold value as learning progresses and advances learning by a non-linear optimization method (including a conjugate gradient method, a linear search method, or a combination of conjugate gradient and linear search methods) during the later part of the learning process, and thereby improves the learning speed.

    摘要翻译: 学习机具有以分级结构连接的多个多输入单输出信号处理电路。 学习机器设置阈值,该阈值是学习过程早期的权重系数变化的评估标准,并且能够进行粗略学习而不改变那些多输入单输出信号处理电路的权重系数 错误足够小。 另一方面,随着学习进行,学习机逐渐降低阈值,并且通过非线性优化方法(包括共轭梯度法,线性搜索方法或共轭梯度和线性搜索方法的组合)在学习过程中逐渐降低阈值 学习过程的后期部分,从而提高学习速度。