Abstract:
A downhole repeater network timing system for a drilling rig including a drillstring extending subsurface downwardly from a surface wellhead. The system includes a node located at the drillstring lower end and including a sensor adapted for providing a signal data set output corresponding to downhole drilling conditions. Multiple nodes are located downhole between the Bottom Hole Assembly (BHA) and the wellhead and are associated with the drillstring. The nodes are adapted for receiving and transmitting the signals. The timing control system is adapted for controlling all times within a timeframe according to pre-configured constants known to all nodes. A downhole low rate linear repeater network timing method uses the system.
Abstract:
A system and method of closed loop control whereby groupings of surface sonic transmitters disposed along the planned path of a well send sonic wave energy to a downhole sonic receiver (or alternatively a downhole sonic transmitter signalling to grouping of surface sonic receivers) in a manner that facilitates the downhole positioning of the well. Subsequent offset well positioning, relative to the first well, may be achieved in a similar manner.
Abstract:
A method for enhancing downhole telemetry performance comprising enhancing a signal in order to offset signal-to-noise ratio reduction with increasing measured depth, wherein the signal is modified at specified measured depths which are inferred from acoustic wave velocity determination.
Abstract:
This invention applies to the means whereby capacitance changes due to varying temperature and/or pressure in a piezoelectric transducer used for acoustic telemetry in a drilling environment is dynamically offset by modifying one or more parameters associated with the drive or control circuitry of said transducer. The object of the invention is to closely maintain the transducer in a resonant mode, thereby ensuring optimum energy consumption.
Abstract:
A method for enhancing downhole telemetry performance comprising enhancing a signal in order to offset signal-to-noise ratio reduction with increasing measured depth, wherein the signal is modified at specified measured depths which are inferred from acoustic wave velocity determination.
Abstract:
A method is provided which transmits information using a plurality of data transmission nodes situated along a drill string. In this method, a first node obtains a transmission status of a second node. When the transmission status of the second node indicates that the second node meets a selected performance threshold, information is sent from the first node to the second node. When the transmission status of the second node indicates that the second node does not meet its performance threshold, then the first node obtains a transmission status of a third node. When the transmission status of the third node indicates that the third node meets a selected performance threshold, information is transmitted from the first node to the third node for relaying along the drill string.
Abstract:
This invention applies to the means whereby capacitance changes due to varying temperature and/or pressure in a piezoelectric transducer used for acoustic telemetry in a drilling environment is dynamically offset by modifying one or more parameters associated with the drive or control circuitry of said transducer. The object of the invention is to closely maintain the transducer in a resonant mode, thereby ensuring optimum energy consumption.
Abstract:
A downhole acoustic transmitter has a pre-loaded piezoelectric transducer, an enclosure in which the piezoelectric transducer is housed, a preload spring that biases the transducer against a first end coupling of the enclosure, and an adjustable preload means mounted to the enclosure such that a selected compressive force is applied to the preload spring, which in turn urges the transducer against a face of the first end coupling such that a mechanical preload is applied to the transducer. The position of the adjustable preload means and the spring compliance are selected so that the level of mechanical preload applied to the transducer compensates for an expected amount of flexing of the acoustic telemetry transmitter due to varying tension and compression applied to the transmitter, thereby maintaining an effective preload on the transducer.
Abstract:
An acoustic transmitter for transmitting an acoustic signal through a downhole medium includes a voltage source; a composite load; and switching circuitry that applies voltage from the voltage source across the composite load in response to a drive signal. The composite load includes charge control circuitry, in the form of at least one inductor, connected electrically in series with a piezoelectric transducer that may be electrically modeled as a capacitor.
Abstract:
A stacked-ring, slow-wave acoustic telemetry isolation system and method for use with tubular assemblies such as drillpipe or production tubing comprising an acoustic wave transmitter, the acoustic isolator behaving such that a “down” wave propagated toward the isolator is reflected back substantially in phase with an “up” wave propagated from the acoustic wave source away from the isolator. The acoustic isolator is similarly effective in reflecting “up” propagating waves originating from below the isolator, hence further protecting the acoustic wave source from possible deleterious interference. It causes substantially all of the emitted wave energy to travel in a chosen direction along the drill pipe, thus aiding the efficiency of acoustic telemetry said pipe.