Abstract:
A semiconductor device has a substrate with a first conductive layer over a surface of the substrate and a plurality of cavities exposing the first conductive layer. A first semiconductor die having conductive TSV is mounted into the cavities of the substrate. A first insulating layer is formed over the substrate and first semiconductor die and extends into the cavities to embed the first semiconductor die within the substrate. A portion of the first insulating layer is removed to expose the conductive TSV. A second conductive layer is formed over the conductive TSV. A portion of the first conductive layer is removed to form electrically common or electrically isolated conductive segments of the first conductive layer. A second insulating layer is formed over the substrate and conductive segments of the first conductive layer. A second semiconductor die is mounted over the substrate electrically connected to the second conductive layer.
Abstract:
A flip chip semiconductor package has a substrate with a plurality of active devices. A contact pad is formed on the substrate in electrical contact with the plurality of active devices. A passivation layer, second barrier layer, and adhesion layer are formed between the substrate and an intermediate conductive layer. The intermediate conductive layer is in electrical contact with the contact pad. A copper inner core pillar is formed by plating over the intermediate conductive layer. The inner core pillar has a rectangular, cylindrical, toroidal, or hollow cylinder form factor. A solder bump is formed around the inner core pillar by plating solder material and reflowing the solder material to form the solder bump. A first barrier layer and wetting layer are formed between the inner core pillar and solder bump. The solder bump is in electrical contact with the intermediate conductive layer.
Abstract:
A semiconductor device has a carrier with a semiconductor die mounting area. A plurality of conductive posts is formed in a periphery of the semiconductor die mounting area and in the carrier. A first portion of the carrier is removed to expose a first portion of the plurality of conductive posts such that a second portion of the plurality of conductive posts is embedded in a second portion of the carrier. A first semiconductor die is mounted to the semiconductor die mounting area and between the first portion of the plurality of conductive posts. A first encapsulant is deposited around the first semiconductor die and around the first portion of the plurality of conductive posts. A second portion of the carrier is removed to expose the second portion of the plurality of conductive posts. An interconnect structure is formed over the plurality of conductive posts and the first semiconductor die.
Abstract:
A semiconductor device has a semiconductor die with a plurality of composite bumps formed over a surface of the semiconductor die. The composite bumps have a fusible portion and non-fusible portion, such as a conductive pillar and bump formed over the conductive pillar. The composite bumps can also be tapered. Conductive traces are formed over a substrate with interconnect sites having edges parallel to the conductive trace from a plan view for increasing escape routing density. The interconnect site can have a width less than 1.2 times a width of the conductive trace. The composite bumps are wider than the interconnect sites. The fusible portion of the composite bumps is bonded to the interconnect sites so that the fusible portion covers a top surface and side surface of the interconnect sites. An encapsulant is deposited around the composite bumps between the semiconductor die and substrate.
Abstract:
An integrated circuit packaging system, and a method of manufacture of an integrated circuit packaging system thereof, including: an embedding material on a component; a mask layer on the embedding material; a buried pattern in the mask layer, the outer surface of the buried pattern coplanar with the outer surface of the mask layer, the buried pattern electrically connected to the component; a patterned dielectric on a portion of the buried pattern; and an integrated circuit die on the buried pattern.
Abstract:
An integrated circuit packaging system, and a method of manufacture thereof, including: a patterned first conductive plating; a molding on the patterned first conductive plating; a through via through the molding; a second conductive plating on the molding and the through via; a protection layer partially covering the first conductive plating, the second conductive plating and the molding; a device on the first conductive plating; and an external connector being attached to the second conductive plating.
Abstract:
An integrated circuit packaging system including: a fiber-less organic substrate including: a first dielectric layer, a first metal layer on the first dielectric layer, a second dielectric layer on the first dielectric layer and the first metal layer, and an interconnect via plated on the first metal layer and the second dielectric layer; an integrated circuit mounted over the second dielectric layer; and an integrated circuit interconnect between the integrated circuit and the interconnect via.
Abstract:
A semiconductor wafer has a plurality of first semiconductor die. A second semiconductor die is mounted to the first semiconductor die. A shielding layer is formed between the first and second semiconductor die. An electrical interconnect, such as conductive pillar, bump, or bond wire, is formed between the first and second semiconductor die. A conductive TSV can be formed through the first and second semiconductor die. An encapsulant is deposited over the first and second semiconductor die and electrical interconnect. A heat sink is formed over the second semiconductor die. An interconnect structure, such as a bump, can be formed over the second semiconductor die. A portion of a backside of the first semiconductor die is removed. A protective layer is formed over exposed surfaces of the first semiconductor die. The protective layer covers the exposed backside and sidewalls of the first semiconductor die.
Abstract:
A semiconductor device has a first interconnect structure. A first semiconductor die has an active surface oriented towards and mounted to a first surface of the first interconnect structure. A first encapsulant is deposited over the first interconnect structure and first semiconductor die. A second semiconductor die has an active surface oriented towards and mounted to a second surface of the first interconnect structure opposite the first surface. A plurality of first conductive pillars is formed over the second surface of the first interconnect structure and around the second semiconductor die. A second encapsulant is deposited over the second semiconductor die and around the plurality of first conductive pillars. A second interconnect structure including a conductive layer and bumps are formed over the second encapsulant and electrically connect to the plurality of first conductive pillars and the first and second semiconductor die.
Abstract:
An integrated circuit packaging system, and a method of manufacture of an integrated circuit packaging system thereof, includes: a singulation substrate having an air vent portion having longitudinal grooves in the air vent portion, the longitudinal grooves all parallel to each other; an integrated circuit die attached to the singulation substrate; and a molding compound on the singulation substrate, on the air vent portion, in a portion of the longitudinal grooves, and on the integrated circuit die.