Abstract:
A shift-brake device includes a locking assembly and two pivot shafts. The locking assembly includes a base seat, a pressing plate and two shaft sleeves. The pressing plate pivotally connected to the base seat is configured with two sleeve holes, and convex portions, the two shaft sleeves are respectively configured with sleeve portions. The two shaft sleeves are configured with circular flanges having concave portions. The pivot shafts arranged on the base seat and the pressing plate are linked with the shaft sleeves. When one pivot shaft is pivoted, the connected shaft sleeve is synchronically driven to cause a concave portion thereof to be deviated from a corresponding convex portion of the pressing plate, the circular flange of the shaft sleeve pushes against the convex portion of the pressing plate to incline the pressing plate, thus to cause the other shaft sleeve unable to be pivoted.
Abstract:
A double-shaft type rotary shaft pivotal positioning structure includes an elastic guide assembly and two pivot shafts. The elastic guide assembly includes two containing portions which are outwardly communicated and formed with two opposite elastic arms and two corresponding planed press-contact sides. The pivot shafts are respectively centrally provided with center section portions that are utilized to respectively enter the containing portions of the elastic guide assembly and each of which includes a periphery provided with two center section planed surfaces capable of being pressingly contacted with the press-contact sides of the elastic guide assembly. When the pivot shafts are synchronously pivoted close to a preset positioning angle, the center section planed surfaces of the pivot shafts are capable of rotatably attaching toward the press-contact sides of the elastic guide assembly, thereby enabling the pivot shafts to approach and be positioned at the preset positioning angle.
Abstract:
A dual-shaft synchronous motion device includes a first shaft and a second shaft; a first rotor and a third rotor disposed on the first shaft and turned synchronously; a second rotor and a fourth rotor disposed on the second shaft and turned synchronously; and a tractive member disposed between the first rotor (the third rotor) and the second rotor (the fourth rotor). When the first shaft drives the first and third rotors to turn, the tractive member brings the second rotor to turn reversely relative to the first rotor. The fourth rotor makes the tractive member drive the third rotor so that the first and second shafts are turned synchronously.
Abstract:
A dual-shaft synchronous movement device and an assembling method thereof. The dual-shaft synchronous movement device includes a first shaft and a second shaft, which are assembled with each other and synchronously rotatable. The invention includes providing an assembling device and arranging on the assembling device a first rotor and a second rotor (or a third rotor and a fourth rotor) between which a drive section is wound; winding the drive section onto the first and second rotors (or the third and fourth rotors) in a tensioned state; and pushing the first and second rotors (or the third and fourth rotors) onto the first and second shafts. Through the first and second rotors (or the third and fourth rotors) and the drive section, when the first shaft is rotated, the second shaft is synchronously rotated.
Abstract:
A synchronous movement device applied to dual-shaft system includes a first shaft and a second shaft, which are assembled with each other and synchronously rotatable. The synchronous movement device further includes a driver disposed on the first shaft and a reactor disposed on the second shaft and a link unit connected between the driver and the reactor. When the first shaft drives the driver to rotate, the driver pushes the link unit to move along the first and second shafts to forcedly push the reactor to rotate in a direction reverse to the moving direction of the driver. Accordingly, the first and second shafts are synchronously rotated.
Abstract:
A dual-shaft synchronous motion device includes a first shaft and a second shaft; a first rotor disposed on the first shaft and turned synchronously; a second rotor disposed on the second shaft and turned synchronously; and a tractive member disposed between the first rotor and the second rotor. When the first shaft drives the first rotor to turn, the tractive member brings the second rotor to turn reversely relative to the first rotor so that the first and second shafts are turned synchronously.
Abstract:
A synchronous movement device applied to dual-shaft system includes a first shaft and a second shaft, which are assembled with each other and synchronously rotatable. The synchronous movement device further includes a driver and a driving rail disposed on the first shaft, a reactor and a reacting rail disposed on the second shaft and a link unit connected between the driver and the reactor. When the first shaft drives the driver to rotate, the driver pushes the link unit to move along the first and second shafts to forcedly push the reactor to rotate in a direction reverse to the moving direction of the driver. Accordingly, the first and second shafts are synchronously rotated.
Abstract:
A synchronous folding device includes two opposing folding members and a multi-joint rotary axle structure mounted between the two folding members. The multi-joint rotary axle structure has two ends which can be folded or unfolded synchronously. The multi-joint rotary axle structure includes a driving joint assembly and a driven joint assembly. The driving joint assembly includes two opposing joint plates and a middle link plate. Two ends of the driving joint assembly are respectively connected to the two opposing folding members. Each joint plate of the driving joint assembly can be turned free through plural turning centers so that both ends can be closed or opened synchronously for the folding device to be folded or unfolded accurately.
Abstract:
A rotary shaft wire passage structure includes a pivot pin and a pivot seat respectively fixedly connected with a pivotal rotary member and a relative pivotal rotary member. The pivot pin has a pivoted section and an annular raised section disposed at one end thereof. The pivoted section is formed with an axial through hole in full communication with outer side via a split. The pivot seat has a shaft hole in which the pivoted section is fitted. One side of the shaft hole is formed with a fissure in communication with the outer side. The fissure is adjustable to a position where the fissure is aligned with the split for placing a wire into the through hole. When the relative pivotal rotary member is pivotally rotated to a working position by a certain angle, the fissure is misaligned from the split to prevent the wire from slipping out.
Abstract:
A uniform distribution support structure of rotary shaft link assembly includes a rotary shaft assembly and a support assembly. The rotary shaft assembly has multiple connection members. Each connection member is formed with a hollow section and a perforation. A guide face is disposed in each hollow section. A spacer shaft rod is disposed between each two adjacent connection members. Each spacer shaft rod is formed with a through hole. A guide arched face is disposed in each through hole. The support assembly has a support member and a lateral support member passing through the through holes and the hollow sections. Multiple opposite guide arched faces are disposed on the support member. Multiple opposite guide faces are disposed on the lateral support member. The guide faces and the guide arched faces respectively abut against the opposite guide faces and the opposite guide arched faces.