摘要:
A Layer 2 network switch is partitionable into a plurality of switch fabrics. The single-chassis switch is partitionable into a plurality of logical switches, each associated with one of the virtual fabrics. The logical switches behave as complete and self-contained switches. A logical switch fabric can span multiple single-chassis switch chassis. Logical switches are connected by inter-switch links that can be either dedicated single-chassis links or logical links. An extended inter-switch link can be used to transport traffic for one or more logical inter-switch links. Physical ports of the chassis are assigned to logical switches and are managed by the logical switch. Legacy switches that are not partitionable into logical switches can serve as transit switches between two logical switches.
摘要:
A port monitor monitors network traffic that passes through a port of a switch. Frame flows routed through the switch are counted by hardware frame counting logic, which includes a content-addressable memory (CAM) and counters corresponding to various frame flows. Port monitor software includes logical containers (“buckets”), which are used to record and sort counts of the frame flows from hardware based on activity of the frame flows. Frame flow sorting is based on confidence building algorithms such that the thrashing of frame flows between buckets is reduced. Storage and sorting of the frame flows in software allows the activity level of any number of frame flows associated with the switch to be counted, regardless of hardware limitations on how many frame flows can be counted. This allows a real-time analysis of frame flows and a determination of frame flows that are major users of Fibre Channel bandwidth.
摘要:
A port monitor monitors network traffic that passes through a port of a switch. Frame flows routed through the switch are counted by hardware frame counting logic, which includes a content-addressable memory (CAM) and counters corresponding to various frame flows. Port monitor software includes logical containers (“buckets”), which are used to record and sort counts of the frame flows from hardware based on activity of the frame flows. Frame flow sorting is based on confidence building algorithms such that the thrashing of frame flows between buckets is reduced. Storage and sorting of the frame flows in software allows the activity level of any number of frame flows associated with the switch to be counted, regardless of hardware limitations on how many frame flows can be counted. This allows a real-time analysis of frame flows and a determination of frame flows that are major users of Fibre Channel bandwidth.