Abstract:
In a method of manufacturing an MRAM device, a first sacrificial layer, an etch stop layer, and a second sacrificial layer are sequentially formed on a substrate and then partially etched to form openings therethrough. Lower electrodes are formed to fill the openings. The first and second sacrificial layers and portions of the etch stop layer are removed to form etch stop layer patterns surrounding upper portions of sidewalls of the lower electrodes, respectively. An upper insulating layer pattern is formed between the etch stop layer patterns to partially define an air pad between the lower electrodes. A first magnetic layer, a tunnel barrier layer, a second magnetic layer, and an upper electrode layer are formed, and are etched to form a plurality of magnetic tunnel junction (MTJ) structures. Each MTJ structure includes a sequentially stacked first magnetic layer pattern, tunnel layer pattern, and second magnetic layer pattern, and each of the MTJ structures contacts a corresponding one of the lower electrodes.
Abstract:
A semiconductor device package includes a semiconductor chip including a conductive pad, a die pad on which the semiconductor chip is mounted and having a first thickness, a lead pattern including a first portion disposed adjacent to the edge of the die pad and having the first thickness and a second portion having a second thickness greater than the first thickness, a heat radiation member disposed on the die pad and the lead pattern and including a groove formed at its bottom surface, and a conductive line disposed to electrically connect the conductive pad to the lead pattern corresponding to the conductive pad and partially inserted into the groove.
Abstract:
In one embodiment, a miniaturized solid-state imaging apparatus includes a body having a cavity for mounting a semiconductor chip therein. The body has an overhanging portion extending toward the cavity. Further, a lead is disposed within the body. The lead has one end exposed through a top surface of the body and the other end exposed through a bottom surface of the body for electrical connection thereof.
Abstract:
A semiconductor device is formed with a normal, non-recessed, spacer structure in a cell region and a recessed spacer structure in a peripheral region. The recessed spacer structure is formed as by etch masking those in the cell region and exposing those in the peripheral region, then performing an etch process. The increased height of the cell region spacers is adapted to further prevent over-etching during gate interconnect formation which would otherwise result in etching through the spacer to the substrate and subsequent short circuit. Therefore, it is also possible to prevent bridge defects due to over-etching, which occurs because the barrier metal layer for a subsequent interconnection contact is accidentally connected to the underlying substrate. Also, since the recessed spacer structure is provided in the peripheral region, it is possible to remarkably enhance a resistance distribution of a cobalt silicide layer occurring in a gate line width of 100 nm or less.
Abstract:
In one embodiment, a miniaturized solid-state imaging apparatus includes a body having a cavity for mounting a semiconductor chip therein. The body has an overhanging portion extending toward the cavity. Further, a lead is disposed within the body. The lead has one end exposed through a top surface of the body and the other end exposed through a bottom surface of the body for electrical connection thereof.
Abstract:
An image pickup device and a manufacturing method thereof. A digital signal processing (DSP) chip is attached on a first surface of a substrate. A CMOS image sensor (CIS) chip is attached on an active surface of the DSP chip. The DSP chip and the CIS chip may be electrically connected to the substrate by wire bonding. A housing kit having a lens configured to transmit an image to the DSP chip may be mounted on the substrate. An inner space between the housing kit and the substrate is not molded, thereby simplifying a manufacturing process and providing a thinner and/or lighter image pickup device.
Abstract:
The present invention provides a semiconductor device having a silicide thin film and method of forming the same. A semiconductor device comprises a gate insulation layer formed on an active region of a semiconductor substrate. A gate electrode is formed on the gate insulation layer. An impurity region is formed in the active region adjacent the gate electrode. A silicide thin film such as a cobalt silicide thin film is formed to a thickness of less than approximately 200 Å in the impurity region.
Abstract:
The present invention relates to an aqueous alkaline solution for mineral supplementation comprising bovine bones, cuttlefish bones, red algae and an organic acid. Also, the invention relates to a method for preparing the aqueous alkaline solution, and a composition or health food containing the aqueous alkaline solution, which is effective in the prevention and improvement in osteoporosis. The aqueous alkaline solution contains various minerals necessary for the human body at large amounts, and thus, can be used as a mineral supplement. Also, the composition prevents bone absorption and bone mineral absorption, and thus, is useful for the prevention and improvement of bone diseases, such as osteoporosis and degenerative bone diseases.
Abstract:
A method for fabricating a MOS transistor using a self-aligned silicide technique is provided. The method includes forming a gate electrode and a silicidation resistant layer pattern that are sequentially stacked on a predetermined region of a semiconductor substrate. Impurities are implanted into the semiconductor substrate to form a source/drain region. A first metal silicide layer is selectively formed on the surface of the source/drain region. The silicidation resistant layer pattern is then removed to expose the gate electrode. A second metal silicide layer is selectively formed on the exposed gate electrode. Consequently, the first metal silicide layer can be formed of a metal silicide layer having superior tolerance with respect to junction spiking. Also, the second metal silicide layer can be formed of another metal silicide layer having a low variation of resistivity due to the variation of the line width of the gate electrode. Therefore, it is possible to fabricate a high-performance MOS transistor suitable for a highly integrated semiconductor device.
Abstract:
Disclosed are a repairable multi-chip package and a high-density memory card having the multi-chip package. The package includes a circuit substrate having bonding tips on a first surface and external contact pads on a second surface opposite to the first surface. The bonding tips and the external contact pads are electrically connected to each other. The package also includes at least two memory chips each mounted on the first surface and having chip pads thereon. The package includes electrically connecting members coupling each bonding tip to each chip pad, and an encapsulation layer covering the chips and the electrically connecting members. Particularly, the encapsulation layer is divided into two or more parts, and the bonding tips are partially embedded in and partially exposed out of the divided encapsulation layer. Accordingly, the exposed bonding tips can be selectively cut or re-connected for repairing the multi-chip package. Additionally, a high-density memory card having the package is also disclosed.