Abstract:
A washer and a control for an automatic washer to operate the washer through a wash cycle selected based upon a range of conditions of a fabric load to be washed. The control has a plurality of selectable stain type entrées, each with a particular dedicated wash cycle. The control also has dispensing control over at least two wash liquor additives, one being a detergent and the other being an oxidizing agent. The control operates the dedicated wash cycles, as selected, using both the detergent and the oxidizing agent, however, the detergent and the oxidizing agent may be dispensed in different orders and at different times and in different amounts, depending on the stain type selected.
Abstract:
A control for an automatic washer to operate the washer through a wash cycle determined based upon various soils and stains in the substrate load to be washed with a wash liquor in a wash zone of the washer. The control has a plurality of stain/soil type entrées, which can be at least one of selected and detected, and cleaned with a particular wash cycle. The control has dispensing control over at least one wash liquor additive. The control has a user input to permit the user to customize the operation of the control with regard to the dispensing of the various wash liquor additive and a timing mechanism. The control has operational control over the particular wash cycles using the dispensing control to dispense additives to the wash liquor at selected times during the wash cycle.
Abstract:
A control for an automatic washer to operate the washer through a wash cycle determined based upon various soils and stains in the substrate load to be washed with a wash liquor in a wash zone of the washer. The control has a plurality of stain/soil type entrées, which can be at least one of selected and detected, and cleaned with a particular wash cycle. The control has dispensing control over at least one wash liquor additive. The control has operational control over activators and deactivators for members of the additives group. The control has operational control over the particular wash cycles using the dispensing control to dispense additives to the wash liquor at selected times during the wash cycle and operating the activators and deactivators at selected times during the wash cycle.
Abstract:
A substrate treating appliance utilizing a plurality of different chemistries for different cycles or different wash loads with a plurality of receptacles for receiving a plurality of cartridges containing the different chemistries. Each receptacle has one half of a lock and key connection arrangement providing a unique interconnection configuration at each receptacle, relative to the remaining receptacles, permitting only a selected type of chemistry cartridge to be accepted at a particular receptacle. A connection effected between the cartridge and the receptacle occurs by rotation of the cartridge relative to the receptacle between an insertion orientation and a locking orientation. Each receptacle is shaped to receive a cylindrical mouth wall of a particular type of chemistry cartridge. Each receptacle may also be uniquely sized, relative to the remaining receptacles, to accept only a selected type of chemistry cartridge. The plurality of receptacles may be arranged adjacent to one another with each cartridge having a configuration that prevents insertion of a cartridge into a receptacle unless every cartridge located in an adjacent receptacle is rotated to the locking orientation.
Abstract:
A wash cycle is provided for a clothes washer, the clothes washer having a wash zone for receiving a substrate load to be cleaned. The wash cycle includes a step of providing a wash liquor for applying to the substrate load. Another step is loading the wash zone with the substrate load. Another step is mixing metal ions with an inactive bleaching agent as catalyst agents to catalyze an activation reaction to produce an active bleaching agent. Another step is combining the active bleaching agent with the wash liquor. Another step is applying the wash liquor with the active bleaching agent to the substrate load. Another step is capturing the metal ions prior to a disposal of the wash liquor.
Abstract:
An improved solvent cleaning process of cleaning a non-aqueous solvent used in a dry cleaning process for fabrics including consecutive wash cycles for washing respective fabrics batches, including a basic solvent refining cycle and a first advanced solvent refining cycle, the basic solvent refining cycle including a step of separating solvent into a first solvent fraction and a second solvent fraction which is less clean than the first fraction, wherein the basic and first advanced solvent refining cycles are independently effected when solvent to be cleaned fulfils a respective predetermined condition.
Abstract:
A method of laundering a fabric load is disclosed including the steps of processing a fabric load in an aqueous-based working fluid, substantially replacing the aqueous-based working fluid with a non-aqueous working fluid of the type which extracts some of the aqueous-based working fluid from the fabric load.
Abstract:
An appliance comprises a rotatable drum; at least one opening into the drum; a closure adapted to selectively close the opening to the drum; a low absorbency textured surface disposed on at least one of the inside surface of the drum and the closure; a motor in driving engagement with the drum and configured to selectively rotate the drum and cause movement of the fabric load within the drum; a fluid delivery system in fluid communication with the interior of the drum; and a fluid removal system in fluid communication with the interior of the drum.
Abstract:
A modular system according to one embodiment of the invention for treating fabric load comprises a first module and a second module. The first module can include a chamber having an interior for holding a fabric load, and the second module can have at least one of a fluid delivery system, a fluid removal system, and a fluid recycling system. The modular system can further include conduits for coupling the systems of the second module with the first module.