Abstract:
A III-nitride semiconductor device includes an active region for supporting current flow during forward-biased operation of the III-nitride semiconductor device. The active region includes a first III-nitride epitaxial material having a first conductivity type, and a second III-nitride epitaxial material having a second conductivity type. The III-nitride semiconductor device further includes an edge-termination region physically adjacent to the active region and including an implanted region comprising a portion of the first III-nitride epitaxial material. The implanted region of the first III-nitride epitaxial material has a reduced electrical conductivity in relation to portions of the first III-nitride epitaxial material adjacent to the implanted region
Abstract:
A semiconductor structure includes a III-nitride substrate and a first III-nitride epitaxial layer of a first conductivity type coupled to the III-nitride substrate. The semiconductor structure also includes a first III-nitride epitaxial structure of the first conductivity type coupled to the first III-nitride epitaxial layer and a second III-nitride epitaxial structure of the first conductivity type coupled to the first III-nitride epitaxial structure. The semiconductor structure further includes a second III-nitride epitaxial layer coupled to the first III-nitride epitaxial structure. The second III-nitride epitaxial layer is of a second conductivity type and is not electrically connected to the second III-nitride epitaxial structure.
Abstract:
A method of making an edge terminated semiconductor device includes providing a GaN substrate having a GaN epitaxial layer grown thereon and exposing a portion of the GaN epitaxial layer to ion implantation. The energy dose is selected to provide a resistivity that is at least 90% of maximum achievable resistivity. The method also includes depositing a conductive layer over a portion of the implanted region.
Abstract:
A method of growing a III-nitride-based epitaxial structure is disclosed. The method includes forming a GaN-based drift layer coupled to the GaN-based substrate, where forming the GaN-based drift layer comprises doping the drift layer with indium to cause the indium concentration of the drift layer to be less than about 1×1016 cm−3 and to cause the carbon concentration of the drift layer to be less than about 1×1016 cm−3. The method also includes forming an n-type channel layer coupled to the GaN-based drift layer, forming an n-contact layer coupled to the GaN-based drift layer, and forming a second electrical contact electrically coupled to the n-contact layer.
Abstract translation:公开了一种生长III族氮化物基外延结构的方法。 该方法包括形成耦合到GaN基衬底的GaN基漂移层,其中形成GaN基漂移层包括用铟掺杂漂移层以使漂移层的铟浓度小于约1×1016 cm -3,并使漂移层的碳浓度小于约1×10 16 cm -3。 该方法还包括形成耦合到GaN基漂移层的n型沟道层,形成耦合到GaN基漂移层的n型接触层,以及形成电耦合到n型接触层的第二电接触。
Abstract:
A III-nitride semiconductor device includes an active region for supporting current flow during forward-biased operation of the III-nitride semiconductor device. The active region includes a first III-nitride epitaxial material having a first conductivity type, and a second III-nitride epitaxial material having a second conductivity type. The III-nitride semiconductor device further includes an edge-termination region physically adjacent to the active region and including an implanted region comprising a portion of the first III-nitride epitaxial material. The implanted region of the first III-nitride epitaxial material has a reduced electrical conductivity in relation to portions of the first III-nitride epitaxial material adjacent to the implanted region
Abstract:
A vertical JFET includes a GaN substrate comprising a drain of the JFET and a plurality of patterned epitaxial layers coupled to the GaN substrate. A distal epitaxial layer comprises a first part of a source channel and adjacent patterned epitaxial layers are separated by a gap having a predetermined distance. The vertical JFET also includes a plurality of regrown epitaxial layers coupled to the distal epitaxial layer and disposed in at least a portion of the gap. A proximal regrown epitaxial layer comprises a second part of the source channel. The vertical JFET further includes a source contact passing through portions of a distal regrown epitaxial layer and in electrical contact with the source channel, a gate contact in electrical contact with a distal regrown epitaxial layer, and a drain contact in electrical contact with the GaN substrate.
Abstract:
A semiconductor device includes a III-nitride substrate of a first conductivity type, a first III-nitride epitaxial layer of the first conductivity type coupled to the III-nitride substrate, and a first III-nitride epitaxial structure coupled to a first portion of a surface of the first III-nitride epitaxial layer. The first III-nitride epitaxial structure has a sidewall. The semiconductor device further includes a second III-nitride epitaxial structure of the first conductivity type coupled to the first III-nitride epitaxial structure, a second III-nitride epitaxial layer of the first conductivity type coupled to the sidewall of the second III-nitride epitaxial layer and a second portion of the surface of the first III-nitride epitaxial layer, and a third III-nitride epitaxial layer of a second conductivity type coupled to the second III-nitride epitaxial layer. The semiconductor device also includes one or more dielectric structures coupled to a surface of the third III-nitride epitaxial layer.
Abstract:
A semiconductor device includes a III-nitride substrate of a first conductivity type, a first III-nitride epitaxial layer of the first conductivity type coupled to the III-nitride substrate, and a first III-nitride epitaxial structure coupled to a first portion of a surface of the first III-nitride epitaxial layer. The first III-nitride epitaxial structure has a sidewall. The semiconductor device further includes a second III-nitride epitaxial structure of the first conductivity type coupled to the first III-nitride epitaxial structure, a second III-nitride epitaxial layer of the first conductivity type coupled to the sidewall of the second III-nitride epitaxial layer and a second portion of the surface of the first III-nitride epitaxial layer, and a third III-nitride epitaxial layer of a second conductivity type coupled to the second III-nitride epitaxial layer. The semiconductor device also includes one or more dielectric structures coupled to a surface of the third III-nitride epitaxial layer.
Abstract:
A semiconductor structure includes a III-nitride substrate with a first side and a second side opposing the first side. The III-nitride substrate is characterized by a first conductivity type and a first dopant concentration. The semiconductor structure also includes a III-nitride epitaxial structure including a first III-nitride epitaxial layer coupled to the first side of the III-nitride substrate and a plurality of III-nitride regions of a second conductivity type. The plurality of III-nitride regions have at least one III-nitride epitaxial region of the first conductivity type between each of the plurality of III-nitride regions. The semiconductor structure further includes a first metallic structure electrically coupled to one or more of the plurality of III-nitride regions and the at least one III-nitride epitaxial region. A Schottky contact is created between the first metallic structure and the at least one III-nitride epitaxial region.
Abstract:
A semiconductor structure includes a GaN substrate having a first surface and a second surface opposing the first surface. The GaN substrate is characterized by a first conductivity type and a first dopant concentration. The semiconductor structure also includes a first GaN epitaxial layer of the first conductivity type coupled to the second surface of the GaN substrate and a second GaN epitaxial layer of a second conductivity type coupled to the first GaN epitaxial layer. The second GaN epitaxial layer includes an active device region, a first junction termination region characterized by an implantation region having a first implantation profile, and a second junction termination region characterized by an implantation region having a second implantation profile.