Abstract:
Provided are a cholesteric liquid crystal composition, and a liquid crystal display panel including the composition, and their preparation methods. The cholesteric liquid crystal composition contains a block copolymer and a cholesteric liquid crystal, wherein the block copolymer has a block A including a chiral group M1 and a block B including a chiral group M2, and the cholesteric liquid crystal has at least two different pitches. The display panel includes an array substrate and a counter substrate placed by cell assembly, and a liquid crystal layer disposed between the array substrate and the counter substrate, wherein the liquid crystal layer comprises the cholesteric liquid crystal composition. The liquid crystal layer in the planar texture is capable of reflecting light of at least two wavelengths in the visible light region.
Abstract:
The invention discloses an anthracene-containing derivative, the production process thereof and an organic electroluminescent display device, wherein the anthracene-containing derivative has a general molecular structural formula of Formula I, wherein, R1 group is selected from an aromatic group or a fused aromatic group having a carbon atom number of 6 to 18, R2 group is selected from an amine group. By using the above described anthracene-containing derivative as a green phosphorescent host material, a green fluorescent host material, a hole injection material, or a hole transporting material in an organic electroluminescent display device, the light emitting efficiency and the light emitting brightness of the organic electroluminescent display device may be improved.
Abstract:
The present disclosure provides an organic electroluminescent display substrate and a manufacturing method thereof, and a display device. The organic electroluminescent display substrate includes a base substrate and a plurality of pixel units formed on the base substrate, the pixel unit including a light-emitting region and a non-light-emitting region. An organic electroluminescent structure is formed in the light-emitting region, the organic electroluminescent structure including a first electrode layer, an organic luminescent functional layer and a second electrode layer stacked on the base substrate, the second electrode layer including a first portion in the light-emitting region and a second portion in the non-light-emitting region, and a plurality of organic/inorganic material layers are provided between the second electrode layer and the base substrate, the plurality of organic/inorganic material layers including at least the organic luminescent functional layer in the light-emitting region and including a transparent material layer in the non-light-emitting regions of parts of pixel units.
Abstract:
The disclosure provides an indoloacridine-containing derivative represented by formula (I), wherein A is a group represented by formula (II), and wherein X, Y, Z and W represent a carbon atom or a nitrogen atom, and at least one of W, X, Y and Z represent a nitrogen atom; R represents a phenyl group, a biphenylyl group, a naphthyl group or a phenanthryl group. The disclosure further provides a process for preparing the compound. The disclosure further provides an organic electroluminescent device comprising the compound. This compound can be used as a phosphorescence host material, a hole-injecting material or a hole-transporting material in an organic electroluminescent device.
Abstract:
An encapsulated structure of a light-emitting device, an encapsulating process thereof, and a display device comprising said encapsulated structure. The encapsulated structure of the light-emitting device comprises: a light-emitting device; and a protective layer of a sulfonate salt formed on a top electrode of the light-emitting device, the sulfonate salt having the following structure: wherein the cation X+ is Li+, Na+ or K+; and R is a substituent selected from the group consisting of unsubstituted alkyl groups having more than 5 carbon atoms, substituted alkyl groups having more than 5 carbon atoms, and alkoxyl groups having more than 5 carbon atoms.
Abstract:
The invention provides a 1,2,4-triazole-based derivative, a production process and use thereof, and an organic electroluminescent device. The invention belongs to the technical field of organic electroluminescence, and can give a blue light-emitting material having a higher luminescence efficiency. The 1,2,4-triazole-based derivative has a molecular structure of the following general formula, wherein A group represents an aromatic heterocyclic group having a carbon atom number of 8-18, a fused-ring aromatic group having a carbon atom number of 9-15, a fluorenyl group, or a triarylamino group. The 1,2,4-triazole-based derivative mentioned in the invention can be used in organic electroluminescent device.
Abstract:
Provided are a display control method and apparatus, a display apparatus, a storage medium, and a computer device. The display control method includes: detecting a picture frame to be output; and controlling a plurality of data lines to output, in a first mode, data signals for displaying the picture frame to be output in in response to detection that the picture frame to be output comprises a reference picture, wherein a signal polarity sequence in the first mode is different from a signal polarity sequence in a second mode, the second mode is an output mode of the plurality of data lines when the picture frame to be output does not comprise a reference picture, the signal polarity sequence is a sequence of polarities of data signals provided by all of the plurality of data lines according to an arrangement order of the plurality of data lines in a display apparatus. The present disclosure solves or improves various display defects caused by local or overall changes in the common voltage value by changing the output mode of data lines.
Abstract:
The present disclosure relates to a method of manufacturing an OLED device, an OLED device and a display panel. The method comprises: forming a first electrode layer over a substrate; forming a pixel define layer over the first electrode layer, the pixel define layer having a plurality of openings each corresponding to a light emitting region of each sub-pixel unit; performing a roughening process over a surface of the pixel define layer apart away from the first electrode layer; forming a hole injection layer covering the pixel define layer and the openings; and forming a hole transport layer, a light emitting layer, an electron transport layer and a second electrode layer in sequence over the hole injection layer at regions corresponding to the openings.
Abstract:
The present disclosure relates to a color filter substrate, a display panel and a display device. The color filter substrate includes a conductive layer located at a side of the color filter substrate where a color filter is located, a peripheral region of the conductive layer is provided with an isolation band configured to isolate external static electricity, the isolation band is provided with a breach, an inside portion of the conductive layer located inside the isolation band is provided with an extending portion configured to export static electricity, and the extending portion is extending to an edge of the color filter substrate through the breach.