Abstract:
Systems, methods, and devices for detecting or confirming fibrillation are discussed. In one example, a method for detecting a cardiac arrhythmia of a patients' heart comprises receiving, by a leadless cardiac pacemaker fixed in the patients' heart, an indication from a remote device that a cardiac arrhythmia is detected, monitoring by the leadless cardiac pacemaker a signal generated by a sensor that is located within the patients' heart, and based at least in part on the monitored signal, confirming whether a cardiac arrhythmia is occurring or not. In some embodiments, the method may further comprise, if a cardiac arrhythmia is confirmed, delivering a therapy to treat the cardiac arrhythmia.
Abstract:
Systems, devices, and methods for adjusting functionality of an implantable medical device based on posture are disclosed. In some instances, a method for operating a leadless cardiac pacemaker implanted into a patient, where the patient has two or more predefined behavioral states, may include detecting a change in the behavioral state of the patient, and in response, changing a sampling rate of a sensor signal generated by a sensor of the leadless cardiac pacemaker. In some embodiments, the method may further include using the sampled sensor signal to determine an updated pacing rate of the leadless cardiac pacemaker and providing pacing to the patient at the updated pacing rate.
Abstract:
Systems and methods for treating arrhythmias are disclosed. In one embodiment an LCP comprises a housing, a plurality of electrodes for sensing electrical signals emanating from outside of the housing, an energy storage module disposed within the housing, and a control module disposed within the housing and operatively coupled to the plurality of electrodes. The control module may be configured to receive electrical signals via two or more of the plurality of electrodes and determine if the received electrical signals are indicative of a command for the LCP to deliver ATP therapy. If the received electrical signals are indicative of a command for the LCP to deliver ATP therapy, the control module may additionally determine whether a triggered ATP therapy mode of the LCP is enabled. If the triggered ATP therapy mode is enabled, the control module may cause the LCP to deliver ATP therapy via the plurality of electrodes.
Abstract:
An implantable cardiac rhythm system includes a first implantable medical device configured to detect a first heartbeat from a first location, and a second implantable medical device configured to detect the first heart beat of the patient from a second location. The second implantable medical device, upon detecting the first heart beat, may communicate an indication of the detected first heart beat to the first implantable medical device, and in response, the first implantable medical device may institute a blanking period having a blanking period duration such that a T-wave of the detected first heart beat is blanked out by the first implantable medical device so as to not be interpreted as a subsequent second heart beat. In some instances, the first implantable medical device is an SICD and the second implantable medical device is a LCP.
Abstract:
Methods, systems, and apparatus for recharging medical devices implanted within the body are disclosed. An illustrative rechargeable system includes a charging device that includes an elongate shaft having a proximal section and a distal section. The distal section is configured to be delivered to a location within the body adjacent to the implanted medical device. The charging device includes a charging element configured to transmit charging energy to a receiver of the implanted medical device.
Abstract:
An implantable medical device (IMD) may include a sensor for providing a sensor output signal and a sense channel configured to receive the sensor output signal from the sensor. The sense channel may be configured to process the sensor output signal and output a sense channel output signal. The sense channel may have an adjustable performance level, wherein for a higher performance level the sense channel consumes more power than for a lower performance level. A controller may be configured to adjust the performance level of the sense channel to achieve more performance and more power consumption when a higher degree of sense channel performance is desired and to achieve less performance and less power consumption when a higher degree of performance is not desired.
Abstract:
Systems, devices, and methods for pacing a heart of a patient are disclosed. An illustrative method may include determining a motion level of the patient using a motion sensor of an implantable medical device secured relative to a patient's heart, and setting a pacing rate based at least in part on the patient's motion level. The patient's motion level may be determined by, for example, comparing the motion level sensed by the motion sensor during a current heart beat to a motion level associated with one or more previous heart beats. Noise may occur in the motion level measurements during those heart beats that transition between an intrinsically initiated heart beat and pace initiated heart beat. Various techniques may be applied to the motion level measurements to help reduce the effect of such noise.
Abstract:
Systems, methods, and devices for detecting or confirming fibrillation are discussed. In one example, a method for detecting a cardiac arrhythmia of a patients' heart comprises receiving, by a leadless cardiac pacemaker fixed in the patients' heart, an indication from a remote device that a cardiac arrhythmia is detected, monitoring by the leadless cardiac pacemaker a signal generated by a sensor that is located within the patients' heart, and based at least in part on the monitored signal, confirming whether a cardiac arrhythmia is occurring or not. In some embodiments, the method may further comprise, if a cardiac arrhythmia is confirmed, delivering a therapy to treat the cardiac arrhythmia.
Abstract:
Systems, devices, and methods for pacing a heart of a patient are disclosed. An illustrative method may include determining a motion level of the patient using a motion sensor of an implantable medical device secured relative to a patient's heart, and setting a pacing rate based at least in part on the patient's motion level. The patient's motion level may be determined by, for example, comparing the motion level sensed by the motion sensor during a current heart beat to a motion level associated with one or more previous heart beats. Noise may occur in the motion level measurements during those heart beats that transition between an intrinsically initiated heart beat and pace initiated heart beat. Various techniques may be applied to the motion level measurements to help reduce the effect of such noise.
Abstract:
System and methods for energy adaptive communications between medical devices are disclosed. In one example, a medical device includes a communication module configured to deliver a plurality of pulses to tissue of a patient, where each pulse has an amount of energy. A control module operatively coupled to the communication module, may be configured to, for each delivered pulse, determine whether the delivered pulse produces an unwanted stimulation of the patient and to change the amount of energy of the plurality of pulses over time so as to identify an amount of energy that corresponds to an unwanted stimulation threshold for the pulses. The control module may then set a maximum energy value for communication pulses that is below the unwanted stimulation threshold, and may deliver communication pulses below the maximum energy value during communication with another medical device.