Abstract:
A backlight module is used in a lighting keyboard. The backlight module includes a light guiding plate and a masking. The masking is disposed on the light guiding plate. The masking includes a support layer, a cover layer and a reflective layer. The support layer includes a first surface and a second surface opposite to the first surface. The cover layer is disposed on the first surface. The cover layer includes a first opening. The reflective layer is disposed on the second surface and faces the light guiding plate for reflecting light emitted from the light guiding plate, so as to enhance lighting efficiency on the first opening. The reflective layer includes a second opening. A shape and a position of the second opening are respectively corresponding to a shape and a position of the first opening.
Abstract:
A light guide plate structure includes a light guide plate, a first medium layer, a micro structure, a second medium layer, and a reflection layer. The light guide plate has a light exit surface and a bottom surface opposite to the light exit surface. The first medium layer is formed on the light exit surface. The micro structure is formed on the bottom surface for redirecting light inside the light guide plate to emit from the light exit surface. The second medium layer is formed on the micro structure. The refractive index of the first medium layer and the refractive index of the second medium layer are less than the refractive index of the light guide plate but greater than the refractive index of air. The reflection layer is formed on the second medium layer for reflecting light inside the light guide plate to emit from the light exit surface.
Abstract:
An illuminated touchpad includes a panel, a light guide layer and a circuit board. The panel includes a first light transmitting region and a second light transmitting region. The light guide layer includes a first light guide region and a second light guide region. The circuit board includes a controller, a touch module, a first light source and a second light source. The controller controls the first light source to emit light, such that the first light guide region guides the light emitted by the first light source to the first light transmitting region. When the touch module senses that the first light transmitting region is touched, the controller controls the second light source to emit light, such that the second light guide region guides the light emitted by the second light source to the second light transmitting region.
Abstract:
A backlit-module-embedded illuminated keyswitch structure includes a baseplate, a mask film disposed below the baseplate and having a first coating configured to substantially reflect a light, a light guide sheet disposed at one side of the mask film and having a light source hole, a reflective layer disposed at one side of the light guide sheet opposite to the mask film and having an opening communicating with the light source hole, a top glue configured to connect the mask film and the light guide sheet around the light source hole, and a bottom glue configured to connect the light guide sheet and the reflective layer around the light source hole. The first coating covers the light source hole. In a stacked direction of the mask film, the light guide sheet, and the reflective layer, at least one of the top glue and the bottom glue overlaps the first coating.
Abstract:
A keyswitch backlight structure includes a light-guiding layer, a reflective layer, and a transparent adhesive layer. The light-guiding layer has a bottom surface, a light-emitting surface opposite to the bottom surface, and a surface microstructure formed on the light-emitting surface. The reflective layer is disposed opposite to the bottom surface. The transparent adhesive layer is closely attached to and between the reflective layer and the light-guiding layer corresponding to the surface microstructure. An illuminated keyswitch structure includes base plate, a keycap, a supporting mechanism, and the above keyswitch backlight structure. The keyswitch backlight structure and the base plate are stacked. The supporting mechanism is connected to and between the base plate and the keycap for lifting the keycap relative to the base plate. Light entering the light-guiding layer exits the light-guiding layer through the light-emitting surface to illuminate a transparent indication area of the keycap.
Abstract:
A light emitting keyboard includes a bottom board, keyswitches, and a lighting board. The lighting board is disposed between the bottom board and the keyswitches or under the bottom board and includes a flexible substrate having a first hole, multiple-light emitting diodes corresponding to the keyswitches, first and second silver-paste circuit layers formed on upper and lower surfaces of the flexible substrate respectively, a via pillar formed in the first hole to be coupled to the first and second silver-paste circuit layers, a copper layer plated on the first and second silver-paste circuit layers, and a first protection layer coated on the copper layer and having second holes. Each multiple-light emitting diode is disposed on the copper layer plated on the first silver-paste circuit layer through the corresponding second hole to be coupled to the first silver-paste circuit layer.
Abstract:
A luminous keyswitch includes a keycap having a light-transparent portion, a baseplate, an up-down mechanism with two ends respectively moveably connected to the keycap and the baseplate, a function sheet disposed on or under the baseplate, and a light source disposed on the function sheet within a vertical projection of the keycap and connected by a copper wire to provide a light illuminating the light-transparent portion. The function sheet includes a flexible upper circuit layer having a first contact point, a flexible spacer layer having a hole, and a flexible lower circuit layer having a second copper contact point, a third copper contact point, a first copper wire connected to the second copper contact point, and a second copper wire connected to the third copper contact point. When the keycap is pressed, the first contact point passes through the hole to electrically connect the second and third copper contact points.
Abstract:
A backlight module includes a light guide plate, a light source, a light shielding sheet, a light reflecting sheet and a light shielding member. The light guide plate has a hole formed thereon and the hole has a side wall. The light source is disposed neighboring to the light guide plate and used for emitting light into the light guide plate. The light shielding sheet is disposed on the light guide plate. The light reflecting sheet is disposed below the light guide plate. The light shielding member is disposed in the hole and covers the side wall of the hole, so as to block the light guided by the light guide plate from being emitted out of the hole.
Abstract:
A backlit keyboard includes a keyboard module having a plurality of key units and a light guide module including a light guide plate, a metal layer, and an insulation layer. The light guide plate has a light-exit surface and a bottom surface. The metal layer has an upper surface and a lower surface, wherein the upper surface is attached to the bottom surface of the light guide plate. When light is incident onto the upper surface of the metal layer, the light will be reflected back into the light guide plate. When electromagnetic wave reaches the lower surface of the metal layer, the metal layer will shield the electromagnetic wave from propagating. The insulation layer substantially covers the lower surface of the metal layer, wherein at least one ground window is formed in the insulation layer to expose the metal layer.
Abstract:
A backlight module is used in a lighting keyboard. The backlight module includes a light guiding plate and a masking. The masking is disposed on the light guiding plate. The masking includes a support layer, a cover layer and a reflective layer. The support layer includes a first surface and a second surface opposite to the first surface. The cover layer is disposed on the first surface. The cover layer includes a first opening. The reflective layer is disposed on the second surface and faces the light guiding plate for reflecting light emitted from the light guiding plate, so as to enhance lighting efficiency on the first opening. The reflective layer includes a second opening. A shape and a position of the second opening are respectively corresponding to a shape and a position of the first opening.