Abstract:
A system, apparatus, method, and computer-readable medium are provided for authorizing a computing node to participate in a group of computing nodes utilizing a shared group password. According to one method described herein, an invitation to join a group is transmitted to a tentative group member node. The invitation is used to establish a connection with a group member node of the group. The tentative group member node generates a hash of a group password and transmits the hash to the group member node. When the group member node receives the hash, the group member node compares the received value to a previously stored hash of the group password. If the previously stored value is identical to the value received from the tentative group member node, then the tentative group member node is authorized as a new member of the group. Otherwise the tentative group member node is not permitted to become a member of the group.
Abstract:
Systems and methods are described that facilitate the management of contact information, at least some of the contact information related to entities in a serverless, peer-to-peer system. A contact store may store information regarding which other entities of a plurality of other entities are authorized to monitor presence of a user entity. Presence of an entity may generally indicate the willingness and/or ability of the entity to communicate and/or collaborate with other entities, for example. The contact store may also store information regarding which other entities of the plurality of other entities the presence of which should be monitored by the system. A user entity may be able to add contacts to and/or delete contacts from the contact store, for example. The user entity may also be able to modify the contact store to modify which other entities are authorized to monitor presence of the user entity and/or which other entities the presence information of which should be monitored by the system, for example.
Abstract:
Systems and methods are described that facilitate the management of contact information, at least some of the contact information related to entities in a serverless, peer-to-peer system. A contact store may store information regarding which other entities of a plurality of other entities are authorized to monitor presence of a user entity. Presence of an entity may generally indicate the willingness and/or ability of the entity to communicate and/or collaborate with other entities, for example. The contact store may also store information regarding which other entities of the plurality of other entities the presence of which should be monitored by the system. A user entity may be able to add contacts to and/or delete contacts from the contact store, for example. The user entity may also be able to modify the contact store to modify which other entities are authorized to monitor presence of the user entity and/or which other entities the presence information of which should be monitored by the system, for example.
Abstract:
A security infrastructure and methods are presented that inhibit the ability of a malicious node from disrupting the normal operations of a peer-to-peer network. The methods of the invention allow both secure and insecure identities to be used by nodes by making them self-verifying. When necessary or opportunistic, ID ownership is validated by piggybacking the validation on existing messages. The probability of connecting initially to a malicious node is reduced by randomly selecting to which node to connect. Further, information from malicious nodes is identified and can be disregarded by maintaining information about prior communications that will require a future response. Denial of service attacks are inhibited by allowing the node to disregard requests when its resource utilization exceeds a predetermined limit. The ability for a malicious node to remove a valid node is reduced by requiring that revocation certificates be signed by the node to be removed.
Abstract:
A security infrastructure and methods are presented that inhibit the ability of a malicious node from disrupting the normal operations of a peer-to-peer network. The methods of the invention allow both secure and insecure identities to be used by nodes by making them self-verifying. When necessary or opportunistic, ID ownership is validated by piggybacking the validation on existing messages. The probability of connecting initially to a malicious node is reduced by randomly selecting to which node to connect. Further, information from malicious nodes is identified and can be disregarded by maintaining information about prior communications that will require a future response. Denial of service attacks are inhibited by allowing the node to disregard requests when its resource utilization exceeds a predetermined limit. The ability for a malicious node to remove a valid node is reduced by requiring that revocation certificates be signed by the node to be removed.
Abstract:
An authentication mechanism uses a trusted people store that can be populated on an individual basis by users of computing devices, and can comprise certificates of entities that the user wishes to allow to act as certification authorities. Consequently, peer-to-peer connections can be made even if neither device presents a certificate or certificate chain signed by a third-party certificate authority, so long as each device present a certificate or certificate chain signed by a device present in the trusted people store. Once authenticated, a remote user can access trusted resources on a host device by having local processes mimic the user and create an appropriate token by changing the user's password or password type to a hash of the user's certificate and then logging the user on. The token can be referenced in a standard manner to determine whether the remote user is authorized to access the trusted resource.
Abstract:
A security infrastructure and methods are presented that inhibit the ability of a malicious node from disrupting the normal operations of a peer-to-peer network. The methods of the invention allow both secure and insecure identities to be used by nodes by making them self-verifying. When necessary or opportunistic, ID ownership is validated by piggybacking the validation on existing messages. The probability of connecting initially to a malicious node is reduced by randomly selecting to which node to connect. Further, information from malicious nodes is identified and can be disregarded by maintaining information about prior communications that will require a future response. Denial of service attacks are inhibited by allowing the node to disregard requests when its resource utilization exceeds a predetermined limit. The ability for a malicious node to remove a valid node is reduced by requiring that revocation certificates be signed by the node to be removed.
Abstract:
A multi-tone synchronous collision resolution system permits communication nodes within a MANET to contend simultaneously for a plurality of available channels. The communication nodes contend for access using a synchronous signaling mechanism that utilizes multiple tones in a synchronous manner to resolve contentions. Contentions are arbitrated locally, and a surviving subset of communication nodes is selected. The communication nodes of the surviving subset then transmit data packets simultaneously across the available communication channels.
Abstract:
Disclosed is a system for organizing and storing information about multiple peer identities. New certificates are introduced that enable a user to efficiently create, modify, and delete identities and groups. New storage structures enable the user to list and search through existing identities, groups, and their related certificates. An identity certificate contains information about a peer identity. A group root certificate is created by a user when he decides to create a new group. When the group creator user wishes to invite another entity to join the group, it creates another type of certificate called a group membership certificate. The group membership certificate is logically “chained” to the group root certificate. The invitee checks the validity of these certificates by checking that the chaining has been properly done. The invitee may then be allowed to invite other entities to join the group by sending out its own group membership certificates.
Abstract:
A cash withdrawal system and method are provided. The system enables the withdrawal of cash associated with a withdrawal cash user at merchant locations.