Abstract:
Cathodic protection of steel in a building or other concrete or similar structure is provided by locating an anode in a suitable location adjacent to the steel and providing an impressed current from a power supply to the anode. The anode is formed from a material which is more electro-negative than the steel so that in the event that the power supply falls below the galvanic potential therebetween, current flows under galvanic action to replace the impressed current. A diode in the circuit prevents flow of current across the power supply but allows the galvanic current when the power supply fails open circuit. An additional diode can be provided in the event the power supply fails closed circuit to prevent reverse current flow.
Abstract:
A mobile routing device communicates over multiple wireless networks with a Host Network Server residing on a Local Area Network. The mobile routing device also communicates with at least one client device. The mobile routing device includes multiple router network adapters, each interfacing with one of the wireless networks to send and receive data from the wireless network. Each router network adapter having a gateway address, associated with the wireless network, that the Host Network Server uses to send data to the mobile routing device. The mobile routing device also includes at least one client router network adapter that interfaces with the at least one client device. Each client router network adapter is associated with an end point address that each Host Application uses to send data to the client device. Data is sent to the client device via the Host Network Server, via at least one of the wireless networks, and via the mobile routing device, using only the end point address. Consequently, a data sender is unaware of the wireless networks used to transport the data and the corresponding gateway addresses.
Abstract:
Cathodic protection of a structure including a steel member at least partly buried in a covering layer, such as steel rebar in a concrete structure, is provided by embedding sacrificial anodes into the concrete layer at spaced positions over the layer and connecting the anodes to the rebar. Each anode is inserted into a drilled hole in the layer and is electrically attached to the rebar in the same or an adjacent hole by a steel pin which is attached to the reinforcement by arc welding or by impact. In the arrangement where the anode and the attachment are in the same hole, the pin passes into or through the anode so as to hold the anode rigidly within the hole. The hole is filled by a settable filler material. In order to maintain effective current conduction from the anode to the reinforcement through the filler and the concrete over an extended period to maintain the required protection, there is added to the filler, to a covering layer on the anode body or to the anode body itself a first material to hold the pH at the anode in a preferred range of the order of 12 to 14 and a second humectant material to absorb moisture.