Abstract:
An electronic device may include a touch screen electronic display configured to offset and/or shift the contact locations of touch implements and/or displayed content based on one or more calculated parallax values. The parallax values may be associated with the viewing angle of an operator relative to the display of the electronic device. In various embodiments, the parallax value(s) may be calculated using three-dimensional location sensors, an angle of inclination of a touch implement, and/or one or more displayed calibration objects. Parallax values may be utilized to remap contact locations by a touch implement, shift and/or offset displayed content, and/or perform other transformations as described herein. A stereoscopically displayed content may be offset such that a default display plane is coplanar with a touch surface rather than a display surface. Contacts by a finger may be remapped using portions of the contact region and/or a centroid of the contact region.
Abstract:
An electronic device may include a touch screen electronic display configured to offset and/or shift the contact locations of touch implements and/or displayed content based on one or more calculated parallax values. The parallax values may be associated with the viewing angle of an operator relative to the display of the electronic device. In various embodiments, the parallax value(s) may be calculated using three-dimensional location sensors, an angle of inclination of a touch implement, and/or one or more displayed calibration objects. Parallax values may be utilized to remap contact locations by a touch implement, shift and/or offset displayed content, and/or perform other transformations as described herein. A stereoscopically displayed content may be offset such that a default display plane is coplanar with a touch surface rather than a display surface. Contacts by a finger may be remapped using portions of the contact region and/or a centroid of the contact region.
Abstract:
A method of displaying visual information to different viewer-eyes includes receiving eye strength data indicative of a deficiency of a weak viewer-eye with respect to a dominant viewer-eye. The method further includes causing a 3D-display system to display a first perspective of an image to the weak viewer-eye and causing the 3D-display system to display a second perspective of the image to the dominant viewer-eye. A difference between the first perspective and the second perspective is a variation of a display characteristic of one of the first and second perspectives where the variation is made in accordance with the indicated deficiency of the weak viewer-eye