摘要:
A coil interface for coupling a phased array magnetic resonance imaging coil to a magnetic resonance imaging system. The coil interface includes a plurality of signal inputs and a plurality of output ports. Each of the output ports is associated with a receiver in the magnetic resonance imaging system. The coil interface also includes an interface circuit. The interface circuit selectively couples at least two of the signal inputs to at least one of the plurality of input ports. Where the coil is a quadrature phased array coil, a preferred embodiment allows the two quadrature signals to be acquired as a single signal, precombined at the RF level within the coil interface, or as two separate RF signals by two of the receivers of the magnetic resonance imaging system hardware.
摘要:
An MRI/MRS magnetic coil system is disclosed wherein the isolation between the coils can be adjusted to decrease or virtually eliminate the coupling between quadrature magnetic resonance imaging coils in order to optimize orthogonality between the coils. The adjustment allows the use of flexible coils which may be conformed to image specific anatomical regions. The RF characteristics of the coils are controlled by variable capacitors. The capacitors are controlled by a remote automatic controller which functions to adjust the RF characteristics of the coils until an optimal orthogonality and signal to noise ratio is achieved between and by the coils.
摘要:
During a transmit cycle portion, a radio frequency transmitter (C) continuously generates an AC biasing signal and selectively generates a radio frequency signal. The AC biasing signal gates a first switch (10) and a second switch (32) such that the radio frequency signals from the transmitter are conducted to a magnetic resonance probe (E) but are blocked from being conducted to a receiver (F). A first filter (20) prevents the bias signals from being applied to the probe. The second switch includes a pair of crossed diodes (34, 36) which are gated conductive by the AC bias signal. A filter (72) passes the radio frequency signals but not the bias signals to ground to prevent the radio frequency signals from reaching the receiver. A filter (80) allows the bias signals to be applied across a load (88) such that the transmitter sees the load at the bias signal frequency. Another filter (40) prevents the bias signal from reaching the transmitter. An additional switch (50) provides further isolation between the receiver and the transmitter during the transmit cycle portion. During the receive cycle portion, radio frequency signals received by the probe pass through the filters (20,40) directly to the receiver but are blocked by switch (10) from passing to the transmitter.
摘要:
Systems and methods for the selection of and application of RF power to a plurality of transmit and/or transmit/receive coil elements to decrease patient SAR and to limit the potential for artifact problems. Without any change to the hardware or software of an MR scanner, the present local coil system provides system logic and coil design flexibility such that only transmit coil elements that are required for a particular portion of an MR scan will be utilized at that time. The local coil system may include any combination of transmit-only, receive-only and transmit/receive coil elements as part of the coil system (array of coil elements). The logic controller of the local coil system gathers input data from the MR scanner, from the attached coil elements and optionally from one or more sensors attached to the coil system itself.
摘要:
A coil for creating improved homogeneity in magnetic flux density in a radio frequency resonator for magnetic resonance imaging and spectroscopy of the human head. The coil has a plurality of conductive members. Each of the conductive members has a linear portion and a tapered portion. The conductive members are arranged to form a first opening having a first diameter and a second opening having a second diameter, with the second diameter being different from the first diameter. The tapered portions of the conductive members provide the coil with a substantially homogeneous pattern of magnetic flux density in at least one of three orthogonal imaging planes of the coil.
摘要:
A magnetic resonance imaging receiver/transmitter coil system for providing images for regions of interest includes a first phased array formed of a plurality of electrically conductive members and defining an array volume and a second phased array formed of a second plurality of electrically conductive members and disposed at least partially within the defined array volume. At least one of the first and second phased arrays is adapted to apply a magnetic field to the defined array volume. At least one of the first and second phased arrays is further adapted to receive said applied magnetic field. The first phased array is extendible to define a further array volume and is provided with a switch for electrically coupling and decoupling an extension to effectively extend the length of the first phased array and thereby define the further array volume. In this manner the length of the first phased array is effectively extended to approximately twice its unextended length.
摘要:
A method for creating improved homogeneity in magnetic flux density in a radio frequency resonator for magnetic resonance imaging and spectroscopy of the human head. A tapered birdcage resonator is also provided. The tapered birdcage resonator includes two electrically conductive rings and a plurality of rods or conductor legs. The first electrically conductive ring forms an inferior end of the coil. The plurality of legs extends from the first electrically conductive ring. Each of the plurality of legs has a linear portion and a tapered portion. The second electrically conductive ring forms a superior end of the coil and is connected to the tapered portion of the plurality of legs.
摘要:
A resonance exciting coil (C) excites magnetic resonance in nuclei disposed in an image region in which a main magnetic field and transverse gradients have been produced. A flexible receiving coil (D) includes a flexible plastic sheet (40) on which one or more loops (20) are adhered to receive signals from the resonating nuclei. Velcro straps (46) strap the flexible sheet and the attached coil into close conformity with the surface of the portion of the patient to be imaged. An impedance matching or coil resonant frequency adjusting network (50) is mounted on the flexible sheet for selectively adjusting at least one of an impedance match and the peak sensitivity resonant frequency of the receiving coil. A preamplifier (52) amplifies the received signals prior to transmission on a cable (24). A selectively variable voltage source (70) applies a selectively adjustable DC bias voltage to the cable for selectively adjusting at least one of the impedance match and the LC resonant frequency of the receiving coil. The received signals are amplified by an amplifier (82) and processed by an image processor (30) to form man-readable images of the examined region of the patient for display on a video display (32) or the like.
摘要:
A magnetic resonance imager includes a quadrature coil assembly (20) for transmitting radio frequency signals into and receiving magnetic resonance signal from an examination region. The quadrature coils assembly includes a first coil (22) and a second coil (24). A shunt path (32, 64, 74, 84, 94, 98, 100, 112, 114, 122) provides a current path by shunting at least a portion of one of the coils. A variable impedance (34, 66, 76, 86, 96, 110, 120) adjusts the amount of current flow through the shunt path and the current flow through the bypassed coil portion. More specifically, adjusting the impedance changes the magnetization vector generated by the coil assembly in a transmit mode and adjusts their relative isolation in a receive mode. The quadrature coils are mounted such that they are offset by about, but not quite, 90.degree.. The variable impedance is adjusted until the offset is brought precisely to 90.degree.. In this manner, the quadrature coils are adjusted electronically after assembly to insure the precision of their isolation.
摘要:
Magnets (12) create a main magnetic field along a z-axis through an image region. A localized coil (D) is disposed in the image region at least to receive magnetic resonance signals from nuclei of the subject which have been induced to resonance. The localized coil includes an inner conductor (30), preferably a plate, which defines a current path extending along the z-axis. The inner conductor is mounted closely adjacent and parallel to a surface of the subject. An outer conductor (32), preferably also a plate, is mounted parallel to but further from the subject than the first conductor. A connecting member (34) interconnects a first end of the inner and outer conductors and is disposed perpendicular to the z-axis. A matching circuit (36) including capacitors (50) which define the resonant frequency of the coil are connected adjacent second ends of the inner and outer conductors. Because the nuclei induced to resonance within the z-axis magnetic field generate magnetic resonance components in the x-y plane, an optimal coupling is achieved to reception of the magnetic resonance signals.