-
公开(公告)号:US20220292701A1
公开(公告)日:2022-09-15
申请号:US17826849
申请日:2022-05-27
Applicant: Google LLC
Inventor: Reza Mahjourian , Martin Wicke , Anelia Angelova
Abstract: A system includes a neural network implemented by one or more computers, in which the neural network includes an image depth prediction neural network and a camera motion estimation neural network. The neural network is configured to receive a sequence of images. The neural network is configured to process each image in the sequence of images using the image depth prediction neural network to generate, for each image, a respective depth output that characterizes a depth of the image, and to process a subset of images in the sequence of images using the camera motion estimation neural network to generate a camera motion output that characterizes the motion of a camera between the images in the subset. The image depth prediction neural network and the camera motion estimation neural network have been jointly trained using an unsupervised learning technique.
-
公开(公告)号:US20220189154A1
公开(公告)日:2022-06-16
申请号:US17605783
申请日:2020-05-22
Applicant: Google LLC
Inventor: Michael Sahngwon Ryoo , Anthony Jacob Piergiovanni , Mingxing Tan , Anelia Angelova
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for determining one or more neural network architectures of a neural network for performing a video processing neural network task. In one aspect, a method comprises: at each of a plurality of iterations: selecting a parent neural network architecture from a set of neural network architectures; training a neural network having the parent neural network architecture to perform the video processing neural network task, comprising determining trained values of connection weight parameters of the parent neural network architecture; generating a new neural network architecture based at least in part on the trained values of the connection weight parameters of the parent neural network architecture; and adding the new neural network architecture to the set of neural network architectures.
-
公开(公告)号:US11348268B2
公开(公告)日:2022-05-31
申请号:US17010967
申请日:2020-09-03
Applicant: Google LLC
Inventor: Reza Mahjourian , Martin Wicke , Anelia Angelova
Abstract: A system includes a neural network implemented by one or more computers, in which the neural network includes an image depth prediction neural network and a camera motion estimation neural network. The neural network is configured to receive a sequence of images. The neural network is configured to process each image in the sequence of images using the image depth prediction neural network to generate, for each image, a respective depth output that characterizes a depth of the image, and to process a subset of images in the sequence of images using the camera motion estimation neural network to generate a camera motion output that characterizes the motion of a camera between the images in the subset. The image depth prediction neural network and the camera motion estimation neural network have been jointly trained using an unsupervised learning technique.
-
公开(公告)号:US20210279511A1
公开(公告)日:2021-09-09
申请号:US17194090
申请日:2021-03-05
Applicant: Google LLC
Inventor: Ariel Gordon , Soeren Pirk , Anelia Angelova , Vincent Michael Casser , Yao Lu , Anthony Brohan , Zhao Chen , Jan Dlabal
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a neural network using consistency measures. One of the methods includes processing a particular training example from a mediator training data set using a first neural network to generate a first output for a first machine learning task; processing the particular training example in the mediator training data set using each of one or more second neural networks, wherein each second neural network is configured to generate a second output for a respective second machine learning task; determining, for each second machine learning task, a consistency target output for the first machine learning task; determining, for each second machine learning task, an error between the first output and the consistency target output corresponding to the second machine learning task; and generating a parameter update for the first neural network from the determined errors.
-
公开(公告)号:US20210073997A1
公开(公告)日:2021-03-11
申请号:US16562819
申请日:2019-09-06
Applicant: Google LLC
Inventor: Suhani Vora , Reza Mahjourian , Soeren Pirk , Anelia Angelova
Abstract: This disclosure describes a system including one or more computers and one or more non-transitory storage devices storing instructions that, when executed by one or more computers, cause the one or more computers to perform operations for generating a predicted segmentation map for potential objects in a future scene depicted in a future image. The operations includes: receiving a sequence of input images that depict the same scene, the input images being captured by a camera at different time steps, the sequence of input images comprising a current input image and one or more input images preceding the current image in the sequence; processing the current input image to generate a segmentation map for potential objects in the current input image and a respective depth map for the current input image; generating a point cloud for the current input image using the segmentation map and the depth map of the current input image, wherein the point cloud is a 3-dimensional (3D) structure representation of the scene as depicted in the current input image; processing the sequence of input images using an ego-motion estimation neural network to generate, for each pair of two consecutive input images in the sequence, a respective ego-motion output that characterizes motion of the camera between the two consecutive input images; processing the ego-motion outputs using a future ego-motion prediction neural network to generate a future ego-motion output that is a prediction of future motion of the camera from the current input image in the sequence to a future image, wherein the future image is an image that would be captured by the camera at a future time step; processing the point cloud of the current input image and the future ego-motion output to generate a future point cloud that is a predicted 3D representation of a future scene as depicted in the future image; and processing the future point cloud to generate a predicted segmentation map for potential objects in the future scene depicted in the future image.
-
公开(公告)号:US20200258249A1
公开(公告)日:2020-08-13
申请号:US16861441
申请日:2020-04-29
Applicant: Google LLC
Inventor: Anelia Angelova , Martin Wicke , Reza Mahjourian
Abstract: A system includes a neural network implemented by one or more computers, in which the neural network includes an image depth prediction neural network and a camera motion estimation neural network. The neural network is configured to receive a sequence of images. The neural network is configured to process each image in the sequence of images using the image depth prediction neural network to generate, for each image, a respective depth output that characterizes a depth of the image, and to process a subset of images in the sequence of images using the camera motion estimation neural network to generate a camera motion output that characterizes the motion of a camera between the images in the subset. The image depth prediction neural network and the camera motion estimation neural network have been jointly trained using an unsupervised learning technique.
-
-
-
-
-