-
公开(公告)号:US20230410389A1
公开(公告)日:2023-12-21
申请号:US18242723
申请日:2023-09-06
Applicant: Google LLC
Inventor: Jonathon Shlens , Vincent Dumoulin , Manjunath Kudlur Venkatakrishna
IPC: G06T11/00 , G06N3/08 , G06F18/40 , G06F18/214 , G06N3/0464 , G06N3/096 , G06N3/04
CPC classification number: G06T11/001 , G06N3/08 , G06T11/00 , G06F18/40 , G06F18/214 , G06N3/0464 , G06N3/096 , G06N3/04
Abstract: A method for applying a style to an input image to generate a stylized image. The method includes maintaining data specifying respective parameter values for each image style in a set of image styles, receiving an input including an input image and data identifying an input style to be applied to the input image to generate a stylized image that is in the input style, determining, from the maintained data, parameter values for the input style, and generating the stylized image by processing the input image using a style transfer neural network that is configured to process the input image to generate the stylized image.
-
公开(公告)号:US20220383076A1
公开(公告)日:2022-12-01
申请号:US17828778
申请日:2022-05-31
Applicant: Google LLC
Inventor: Jonathon Shlens , Vijay Vasudevan , Jiquan Ngiam , Benjamin James Caine , Zhengdong Zhang , Zhifeng Chen , Hao-Tien Chiang , David Joseph Weiss , Jeffrey Ling , Ashish Venugopal
IPC: G06N3/04
Abstract: A method for performing one or more tasks, wherein each of the one or more tasks includes predicting behavior of one or more agents in an environment, the method comprising: obtaining a three-dimensional (3D) input tensor representing behaviors of the one or more agents in the environment across a plurality of time steps; generating an encoded representation of the 3D input tensor by processing the 3D input tensor using an encoder neural network, wherein 3D input tensor comprises a plurality of observed cells and a plurality of masked cells; and processing the encoded representation of the 3D input tensor using a decoder neural network to generate a 4D output tensor.
-
公开(公告)号:US11205099B2
公开(公告)日:2021-12-21
申请号:US16833449
申请日:2020-03-27
Applicant: Google LLC
Inventor: Jonathon Shlens , Quoc V. Le , Ekin Dogus Cubuk , Barret Zoph
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a machine learning model. One of the methods includes obtaining a training data set for training a machine learning model, the training data set comprising a plurality of training inputs; determining a plurality of data augmentation policies, wherein each data augmentation policy defines a procedure for processing a training input to generate a transformed training input; for each data augmentation policy, training the machine learning model using the data augmentation policy; determining, for each data augmentation policy, a quality measure of the machine learning model that has been trained using the data augmentation policy; and selecting a final data augmentation policy based using the quality measures of the machine learning models.
-
公开(公告)号:US20210334624A1
公开(公告)日:2021-10-28
申请号:US17365939
申请日:2021-07-01
Applicant: Google LLC
Inventor: Wei Hua , Barret Zoph , Jonathon Shlens , Chenxi Liu , Jonathan Huang , Jia Li , Fei-Fei Li , Kevin Patrick Murphy
Abstract: A method for determining an architecture for a task neural network configured to perform a particular machine learning task is described. The method includes obtaining data specifying a current set of candidate architectures for the task neural network; for each candidate architecture in the current set: processing the data specifying the candidate architecture using a performance prediction neural network having multiple performance prediction parameters, the performance prediction neural network being configured to process the data specifying the candidate architecture in accordance with current values of the performance prediction parameters to generate a performance prediction that characterizes how well a neural network having the candidate architecture would perform after being trained on the particular machine learning task; and generating an updated set of candidate architectures by selecting one or more of the candidate architectures in the current set based on the performance predictions for the candidate architectures in the current set.
-
公开(公告)号:US20210279465A1
公开(公告)日:2021-09-09
申请号:US16812154
申请日:2020-03-06
Applicant: Google LLC
Inventor: Jonathon Shlens , Vijay Vasudevan , Jiquan Ngiam , Wei Han , Zhifeng Chen , Brandon Chauloon Yang , Benjamin James Caine , Zhengdong Zhang , Christoph Sprunk , Ouais Alsharif , Junhua Mao , Chen Wu
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for processing data generated by a sensing system that rotationally senses an environment. In one aspect, a method comprises partitioning a predetermined period of time into a plurality of sub-periods, wherein the predetermined period of time is a period of time for which data generated by the sensing system constitutes a complete rotational sensing of the environment; for each sub-period: receiving current data generated by the sensing system during the sub-period and characterizing a respective partial scene of the environment; processing the current data using an object detection neural network to generate a current object detection output that is specific to the respective partial scene of the environment.
-
公开(公告)号:US11087504B2
公开(公告)日:2021-08-10
申请号:US16494386
申请日:2018-05-21
Applicant: Google LLC
Inventor: Sergio Guadarrama Cotado , Jonathon Shlens , David Bieber , Mohammad Norouzi , Kevin Patrick Murphy , Ryan Lienhart Dahl
Abstract: Systems and methods for transforming grayscale images into color images using deep neural networks are described. One of the systems include one or more computers and one or more storage devices storing instructions that, when executed by one or more computers, cause the one or more computers to implement a coloring neural network, a refinement neural network, and a subsystem. The coloring neural network is configured to receive a first grayscale image having a first resolution and to process the first grayscale image to generate a first color image having a second resolution lower than the first resolution. The subsystem processes the first color image to generate a set of intermediate image outputs. The refinement neural network is configured to receive the set intermediate image outputs, and to process the set of intermediate image outputs to generate a second color image having a third resolution higher than the second resolution.
-
公开(公告)号:US20200257961A1
公开(公告)日:2020-08-13
申请号:US16861491
申请日:2020-04-29
Applicant: Google LLC
Inventor: Wei Hua , Barret Zoph , Jonathon Shlens , Chenxi Liu , Jonathan Huang , Jia Li , Fei-Fei Li , Kevin Patrick Murphy
Abstract: A method for determining an architecture for a task neural network configured to perform a particular machine learning task is described. The method includes obtaining data specifying a current set of candidate architectures for the task neural network; for each candidate architecture in the current set: processing the data specifying the candidate architecture using a performance prediction neural network having multiple performance prediction parameters, the performance prediction neural network being configured to process the data specifying the candidate architecture in accordance with current values of the performance prediction parameters to generate a performance prediction that characterizes how well a neural network having the candidate architecture would perform after being trained on the particular machine learning task; and generating an updated set of candidate architectures by selecting one or more of the candidate architectures in the current set based on the performance predictions for the candidate architectures in the current set.
-
公开(公告)号:US20190370648A1
公开(公告)日:2019-12-05
申请号:US16425900
申请日:2019-05-29
Applicant: Google LLC
Inventor: Barret Zoph , Jonathon Shlens , Yukun Zhu , Maxwell Donald Emmet Collins , Liang-Chieh Chen , Gerhard Florian Schroff , Hartwig Adam , Georgios Papandreou
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining neural network architectures. One of the methods includes obtaining training data for a dense image prediction task; and determining an architecture for a neural network configured to perform the dense image prediction task, comprising: searching a space of candidate architectures to identify one or more best performing architectures using the training data, wherein each candidate architecture in the space of candidate architectures comprises (i) the same first neural network backbone that is configured to receive an input image and to process the input image to generate a plurality of feature maps and (ii) a different dense prediction cell configured to process the plurality of feature maps and to generate an output for the dense image prediction task; and determining the architecture for the neural network based on the best performing candidate architectures.
-
-
-
-
-
-
-