Abstract:
According to one embodiment, a display device including a first substrate having a first end portion, a second substrate facing the first substrate and having a second end portion separated from the first end portion, a liquid crystal layer located between the first substrate and the second substrate, a light-emitting element facing the second end portion, a first sealing member bonding the first substrate and the second substrate together, and a low refractive area located between the first substrate and the second substrate, located between the second end portion and the first sealing member in planar view, and containing a material having a refractive index lower than that of the second substrate.
Abstract:
According to an aspect, a display apparatus includes: a first light-transmissive substrate; a second light-transmissive substrate arranged to face the first light-transmissive substrate; a liquid crystal layer including polymer dispersed liquid crystals sealed between the first light-transmissive substrate and the second light-transmissive substrate; at least one light-emitting device arranged to face at least one of a side surface of the first light-transmissive substrate or a side surface of the second light-transmissive substrate; and at least one reflector arranged on at least one of a side surface of the first light-transmissive substrate or a side surface of the second light-transmissive substrate, the side surface of the first or second light-transmissive substrate being on an opposite side of the side surface of the first or second light-transmissive substrate to which the at least one light-emitting device faces, and configured to reflect light at the side surface on the opposite side.
Abstract:
A display device according to one aspect of the present invention includes a first substrate including a pixel portion and a terminal portion, a second substrate arranged to face the pixel portion, a first light source device arranged in the terminal portion, and irradiating a first end surface of the second substrate with first light, a liquid crystal layer arranged between the first substrate and the second substrate, and a semiconductor element arranged on a side opposite to a side of the pixel portion across the first light source device, and electrically coupled with the terminal portion, wherein the first light is propagated while reflected between the first substrate and the second substrate, and the liquid crystal layer modulates the propagated first light.
Abstract:
A display device according to one aspect of the present invention includes a first substrate including a pixel portion and a terminal portion, a second substrate arranged to face the pixel portion, a first light source device arranged in the terminal portion, and irradiating a first end surface of the second substrate with first light, a liquid crystal layer arranged between the first substrate and the second substrate, and a semiconductor element arranged on a side opposite to a side of the pixel portion across the first light source device, and electrically coupled with the terminal portion, wherein the first light is propagated while reflected between the first substrate and the second substrate, and the liquid crystal layer modulates the propagated first light.
Abstract:
According to an aspect, a display device includes a display unit, a parallax adjuster that includes a plurality of unit areas, a controller that detects positions of a right eye and a left eye of a user, determines a pixel display of pixels of a right eye image and a left eye image, and sets a light transmission state to the unit areas in accordance with the positions of the right eye and the left eye and the pixel display; a plurality of conductors that are provided corresponding to the respective unit areas and each of which applies a signal to set the light transmission state of the unit area to the corresponding unit area; and a coupling unit that electrically couples the conductors together, the coupling unit providing a certain resistance value between the conductors.
Abstract:
A liquid crystal device including: a first substrate, the first substrate being transparent; a second substrate disposed opposite the first substrate, the second substrate being transparent; a liquid crystal layer provided between the first substrate and the second substrate, the liquid crystal layer including liquid crystal molecules; an alignment film with alignment treatment such that the liquid crystal molecules align, the alignment film being provided on a surface of the first substrate, the surface facing the liquid crystal layer; and pillar spacers provided on the alignment film, wherein the alignment treatment is applied to the alignment film except at least a part of area in which each of the pillar spacers overlaps with the alignment film.