Abstract:
A detection apparatus comprising: a first substrate; a detection region having a first detection side extending along a first direction parallel with a surface of the first substrate and a second detection side extending along a second direction intersecting the first direction; a frame region provided outside the detection region and having a first frame region extending along the first detection side and a second frame region extending along the second detection side; a first electrode provided at a position overlapping the detection region of the first substrate, the first electrode extending in the second direction; a second electrode provided at a position overlapping the detection region, the second electrode extending in the first direction; a plurality of terminals provided in the first frame region of the first substrate and arrayed in the first direction, and including a first terminal; a first wire; and a second wire.
Abstract:
According to one embodiment, a sensor-equipped display device includes a display panel which includes a sensor driving electrode disposed in a display area for displaying an image, detection electrodes each including a body portion opposed to the sensor driving electrode in the display area and a broadened portion connected to the body portion and formed to be wider than the body portion, and a lead line disposed in a non-display area outside the display area and electrically connected to the broadened portion. The broadened portion is disposed in the non-display area without being overlaid on the display area in planar view.
Abstract:
According to an aspect, a liquid crystal display device includes: a liquid crystal display unit that displays an image; a plurality of electrodes arranged in the liquid crystal display unit in parallel with one direction along a display surface of the liquid crystal display unit; a measuring unit that measures electric resistance values of the electrodes; a specifying unit that specifies a temperature of the liquid crystal display unit based on the electric resistance values of the electrodes; and an application unit that applies, to the electrodes, a voltage for causing the electrode to generate heat based on the temperature of the liquid crystal display unit.
Abstract:
According to an aspect, a display device with a touch detection function, during a touch detection operation, derives a signal value based on the touch detection signal at coordinates at which the pointer is in contact with or in proximity to the device and in the vicinity of the coordinates; derives a three-dimensional waveform which employs a magnitude of the signal value as a height direction; derives a straight line in the three-dimensional waveform, the straight line connecting between a barycenter based on a volume of a three-dimensional waveform portion equal to or greater than a first threshold value in the height direction and a barycenter based on a volume of a three-dimensional waveform portion equal to or greater than a second threshold value in the height direction; and detects based on the straight line whether the pointer is in contact with or in proximity to the device.