Abstract:
A rotary microactuator that includes a stationary structure formed on a substrate and a movable structure attached to the stationary structure by a flexure. The stationary structure has at least one branch, with each branch of the stationary structure having at least one electrode finger. The movable structure has at least one branch and a center of rotation about which the movable structure rotates. Each branch of the movable structure has at least one electrode finger. Each branch of the movable structure is separated from an adjacent branch of the stationary structure by a minimum-required distance along the branch of the movable structure. The minimum-required distance is based on an electrostatic attractive force generated between the branch of the movable structure and a branch of the stationary structure that is adjacent to the branch of the movable structure and is located in a direction from the branch of the movable structure that is opposite to a direction that the branch of the movable structure is driven. Additionally, the minimum-required distance is based on a minimum length of the fingers of a branch of the movable structure and of a branch of the stationary structure that is necessary for producing a position-independent electrostatic force. Each finger is attached to a branch of the movable structure at a proximal end of the finger at an angle that is substantially perpendicular to a straight line between the proximal end of the finger and the center of rotation.
Abstract:
A rotary microactuator includes a plurality of stationary electrodes formed on a substrate, an electrically conducting bottom layer formed on the substrate that is electrically isolated from the stationary electrodes, a plurality of movable electrode, and an electrically conducting top layer attached to the movable electrodes. The top layer is electrically connected to the bottom layer, the movable electrodes, and to a signal common that is preferably a ground potential. The top layer prevents vibration modes of the microactuator caused by vibrations of individual electrodes of the plurality of movable electrodes. The top layer, the bottom layer and the movable electrodes surround the stationary electrodes and contain an electric field generated between the stationary electrodes and the movable electrodes. An edge structure is formed on the substrate surrounding the plurality of stationary electrodes, and is electrically connected to the top layer, the bottom layer and the plurality of movable electrodes.