摘要:
In the computer data security field, a cryptographic hash function process is embodied in a computer system or computer software or logic circuitry and is keyless, but highly secure. The process is based on (mathematical) quasi-group operations such as in the known “EDON-R” hash function. But here one or more blank rounds (iterations) of the quasi-group operation are concatenated to the EDON-R hash function operations, to overcome perceived security weaknesses in EDON-R.
摘要:
Disclosed herein are systems, computer-implemented methods, and computer-readable storage media for obfuscating data based on a discrete logarithm. A system practicing the method identifies a clear value in source code, replaces the clear value in the source code with a transformed value based on the clear value and a discrete logarithm, and updates portions of the source code that refer to the clear value such that interactions with the transformed value provide a same result as interactions with the clear value. This discrete logarithm approach can be implemented in three variations. The first variation obfuscates some or all of the clear values in loops. The second variation obfuscates data in a process. The third variation obfuscates data pointers, including tables and arrays. The third variation also preserves the ability to use pointer arithmetic.
摘要:
The present method is directed, in the computer data security field, to cryptographic sponge and hash function processes which are embodied in a computer system and are typically keyless, but highly secure. The processes are based on the type of randomness exhibited by manipulation of the well known three dimensional Rubik's cube puzzle. Computation of the hash or sponge value (digest) is the result of executing in a model (such as computer code or logic circuitry) an algorithm modeling such a puzzle using the message as an input to the cube puzzle algorithm, then executing the cube puzzle algorithm. A state of the modeled cube puzzle (the final cube puzzle arrangement) after execution gives the sponge or hash digest value of the message.
摘要:
In the computer data security field, a cryptographic hash function process embodied in a computer system and which is typically keyless, but is highly secure. The process is based on the type of chaos introduction exhibited by a game process such as the well known shuffling of a deck of playing cards. Computation of the hash value (digest) is the result of executing in a model (such as computer code or logic circuitry) a game algorithm that models the actual game such as a playing card shuffling algorithm using the message as an input to the algorithm, then executing the card shuffling algorithm on the input. A state (order) of the modeled deck of cards after a shuffle (or multiple shuffles) gives the hash digest value.
摘要:
In the field of computer data security, a hash process which is typically keyless and embodied in a computing apparatus is highly secure in terms of being resistant to attack. The hash process uses computer code (software) polymorphism, wherein computation of the hash value for a given message is partly dependent on the content (data) of the message. Hence the computer code changes dynamically while computing each hash value.
摘要:
In the data security field, a data protection process embodied in a computer system or computing device or equivalent and which securely descrambles protected (scrambled) data. The process descrambles the data using a dynamic process employing a set of multi-level trees of deterministic functions to generate a descrambling mask value and recover the descrambled message.
摘要:
In the field of cryptography, such as for a computer enabled block cipher, a cipher or other cryptographic process is hardened against an attack by protecting the cipher key or subkeys by using a masking process for these keys. The subkeys are thereby protected by applying to them a mask or set of masks to hide their contents. This is especially advantageous in a “White Box” computing environment where an attacker has full access to the cipher algorithm, including the algorithm's internal state during execution. Further, this method and the associated apparatus are useful where the key is derived through a process and so is unknown when the software code embodying the cipher is compiled. This is typically the case where there are many users of the cipher and each has his own key or where each user session has its own key.
摘要:
In the data security field, a modular cryptographic hash function process is embodied in a computer system or hardware (circuitry). The process is based on the mode of operation of the known “Shabal” hash function which uses a keyed permutation applied to each word of the message. Here a function is substituted for the permutation and additional final rounds are added to the function. Security is further enhanced over that of the Shabal hash function by avoiding use of the message blocks in computing certain of the data arrays, in order to frustrate known message attacks.
摘要:
An asymmetric (dual key) data obfuscation process, based on the well known ElGamal cryptosystem algorithm, and which uses multiplicative cyclic groups to transform (obfuscate) digital data for security purposes. In the present system the data need not be a member of the cyclic group, unlike in the ElGamal cryptosystem algorithm. Also, any one of several additional mathematical data transformations are further applied to the transformed data, thereby enhancing security of the transformed data.
摘要:
This discloses, in the computer data security field, a cryptographic hash function process embodied in a computer system and which may be keyless, but is highly secure. The process is based on the type of randomness exhibited by a heap or stack of physical objects such as a heap of pieces of fruit and involves modeling the behavior of such a heap when pieces are removed from the heap. Computation of the hash value (digest) is thereby the result of executing a heap model algorithm using the message as an input to initialize the heap, then executing the heap model algorithm which logically models the process of serially removing objects (pieces of fruit) from the heap at various locations in the modeled heap.