Abstract:
Techniques herein are for chaining nonvolatile storage devices to achieve high availability. A method involves a storage server receiving a write request to store data blocks in a first nonvolatile memory device. The storage server comprises a plurality of nonvolatile memory devices that cache data blocks stored on primary storage. The plurality of nonvolatile memory devices comprises the first nonvolatile memory device. The storage server maintains a cache index of data blocks that reside in the plurality of nonvolatile memory devices. Based on one or more criteria, the storage server reroutes the write request to a second nonvolatile memory device of the plurality of nonvolatile memory devices and stores an identifier of the second nonvolatile memory device in the cache index.
Abstract:
In a write by-peer-reference, a storage device client writes a data block to a target storage device in the storage system by sending a write request to the target storage device, the write request specifying information used to obtain the data block from a source storage device in the storage system. The target storage device sends a read request to the source storage device for the data block. The source storage device sends the data block to the target storage device, which then writes the data block to the target storage device. The data block is thus written to the target storage device without the storage device client transmitting the data block itself to the target storage device.
Abstract:
Approaches, techniques, and mechanisms are disclosed for improved caching in database systems that deal with multiple data access patterns, such as in database systems that interface with both OLTP and Data Warehouse clients. A cache is deployed between a database server and a storage system that stores data units. Some of the data units accessed by the database server are buffered within the cache. The data units may be associated with data access patterns, such as a random data access pattern or a scan data access pattern, in accordance with which the database server is or appears to be accessing the data units. A processor selects when to cache data units accessed by the database server, based at least on the associated data access patterns. Recent access counts may also be stored for the data units, and may further be utilized to select when to cache data units.