Abstract:
Disclosed are a system, apparatus, and method for performing occlusion handling for simultaneous localization and mapping. Occluded map points may be detected according to a depth-mask created according to an image keyframe. Dividing a scene into sections may optimize the depth-mask. Size of depth-mask points may be adjusted according to intensity. Visibility may be verified with an optimized subset of possible map points. Visibility may be propagated to nearby points in response to determining an initial visibility of a first point's surrounding image patch. Visibility may also be organized and optimized according to a grid.
Abstract:
A mobile platform visually detects and/or tracks a target that includes a dynamically changing portion, or otherwise undesirable portion, using a feature dataset for the target that excludes the undesirable portion. The feature dataset is created by providing an image of the target and identifying the undesirable portion of the target. The identification of the undesirable portion may be automatic or by user selection. An image mask is generated for the undesirable portion. The image mask is used to exclude the undesirable portion in the creation of the feature dataset for the target. For example, the image mask may be overlaid on the image and features are extracted only from unmasked areas of the image of the target. Alternatively, features may be extracted from all areas of the image and the image mask used to remove features extracted from the undesirable portion.
Abstract:
Various methods, apparatuses and/or articles of manufacture are provided which may be implemented for use by an electronic device to track objects across two or more digital images. For example, an electronic device may generate a plurality of warped patches corresponding to a reference patch of a reference image, and combine two or more warped patches to form a blurred warped patch corresponding to the reference patch with a motion blur effect applied to a digital representation corresponding to a keypoint of an object to be tracked.
Abstract:
Systems, apparatus and methods to create a database by a device (such as a server) and to use the database by a mobile device for detecting a planar target are presented. The database allows recognition of a planar target by a mobile device from steeper angles with minimum impact on runtime. The database is created from at least one warped view of the planar target. For example, a database may contain keypoints and descriptors from a non-warped view and also from one or more warped views. The database may be pruned by removing keypoints and corresponding descriptors of one image (e.g., a warped image) overlapping with similar or identical keypoints and descriptors of another image (e.g., a non-warped image).