Abstract:
A display device includes: a display panel including a plurality of pixels connected to a plurality of scan lines; a scan driving circuit, which drives the plurality of scan lines in synchronization with a clock signal; and a driving controller, which outputs the clock signal. While an operating mode is a multi-frequency mode, the driving controller comparts the display panel into a first display area and a second display area. A hold frame of the multi-frequency mode includes a first section during which the first display area is driven, and a second section during which the second display area is driven. The driving controller outputs the clock signal of a normal power mode during the first section and outputs the clock signal of a low-power mode during the second section.
Abstract:
A display apparatus includes an optical module, a display panel and a display panel driver. The display panel is disposed on the optical module. The display panel driver is configured to drive the display panel. The display panel includes a first display area including at least a portion overlapping with the optical module and a second display area not overlapping with the optical module in a plan view. The first display area includes pixels having a first pixel structure. The second display area includes pixels having a second pixel structure different from the first pixel structure.
Abstract:
Example embodiments of the present disclosure provide a display device including: a plurality of pixels; a first scan gate line and a second scan gate line configured to transfer scan signals to a first pixel row of the pixels; a plurality of first gate bridges connected with the first scan gate line to transfer the scan signals to a plurality of first pixels at the first pixel row; a plurality of second gate bridges connected with the second scan gate line to transfer the scan signals to a plurality of second pixels at the first pixel row; a plurality of first data lines configured to supply a plurality of data voltages corresponding to the first pixels; and a plurality of second data lines configured to supply a plurality of data voltages corresponding to the second pixels, wherein two of the first data lines are positioned between two first pixels corresponding thereto, and two of the second data lines are positioned between two second pixels corresponding thereto.
Abstract:
A display device includes a display unit including a first pixel, a second pixel disposed adjacent to the first pixel in a first direction, a third pixel disposed adjacent to the first pixel in a second direction crossing the first direction, and a fourth pixel disposed adjacent to the third pixel in the first direction. Each of the first to fourth pixels includes a first sub-pixel and a second sub-pixel. The display device further includes a data driver that outputs a plurality of data voltages, a selective output unit that outputs the data voltages to the first to fourth pixels in a different order for each of a plurality of frames, and a scan driver that outputs a first scan signal to the first and second pixels and outputs a second scan signal, which is delayed from the first scan signal, to the third and fourth pixels.
Abstract:
An organic light emitting display includes pixels, a scan driver configured to supply a scan signal to a specific scan line during a third period of the sensing frame, and configured to sequentially supply scan signals to the scan lines during a sixth period of the sensing frame, a data driver configured to supply, to the data lines, a previous data signal corresponding to a gray scale according to the scan signal supplied to the specific scan line during the third period, and configured to supply a current data signal to the data lines to be synchronized with the scan signals supplied during the sixth period, and a compensation unit configured to extract the threshold voltage and mobility information of the driving transistor from pixels at a specific horizontal line and coupled to the specific scan line before the scan signal is supplied during the third period.
Abstract:
A display device includes: a display panel including: a display portion for displaying an image; and a first pad coupled with the display portion and for receiving an out signal from the display portion; a driver coupled with the display portion for supplying a driving signal to the display portion; a cover covering the display panel; and a connection unit coupling the first pad and the driver to each other to transmit the out signal to the driver, wherein at least a portion of the connection unit is in the cover.
Abstract:
A pixel circuit for increasing accuracy of current sensing of an organic light-emitting diode (OLED) display is disclosed. In one aspect, the pixel circuit includes an OLED, a driving circuit, and first to third transistors. The driving circuit is configured to adjust a magnitude of a current flowing through the OLED based at least in part on a data signal received from a data line. The first transistor is configured to electrically connect the data line and a holding capacitor based at least in part on a scan signal. The second transistor is configured to electrically connect the holding capacitor and the driving circuit based at least in part on a write control signal. The third transistor is configured to electrically connect the data line and an anode electrode of the OLED based at least in part on a sensing control signal.
Abstract:
A pixel capable of displaying an image with uniform brightness is disclosed. In one aspect, the pixel includes an organic light emitting diode (OLED), a first transistor for controlling an amount of current that flows from a first power supply to a second power supply via the OLED in response to a voltage applied to a first node. The pixel also includes a second transistor that is coupled between a bias power supply and the first node and whose gate electrode is coupled to an emission control line. The pixel further includes a third transistor that is coupled between an anode electrode of the OLED and a feedback line and whose gate electrode is coupled to a control line.
Abstract:
A display apparatus includes a display panel, a gate driver, a data driver and an emission driver. The display panel includes a pixel. The gate driver is configured to output a gate signal to the pixel. The data driver is configured to output a data voltage to the pixel. The emission driver is configured to output an emission signal to the pixel. The pixel includes a light emitting element, a driving switching element configured to apply a driving current to the light emitting element and a bias switching element configured to apply a bias voltage to the driving switching element. The display apparatus increases a level of the bias voltage when a duration of a light emission time of the pixel is increased.
Abstract:
A display panel includes a first pixel group including sub-pixels coupled to a first scan line and located in first through N-th sub-pixel columns, where N is an even number greater than or equal to 2, a second pixel group including sub-pixels coupled to the first scan line and located in (N+1)-th through 2N-th sub-pixel columns, a third pixel group including sub-pixels coupled to a second scan line adjacent to the first scan line and located in the first through N-th sub-pixel columns, and a fourth pixel group including sub-pixels coupled to the second scan line and located in the (N+1)-th through 2N-th sub-pixel columns. The first pixel group and the second pixel group are driven during a first scan on time in which the first scan line is driven. Consecutive N−1 sub-pixels among the sub-pixels of the third pixel group and one sub-pixel among the sub-pixels of the fourth pixel group are driven during a first portion of a second scan on time in which the second scan line is driven, and consecutive N−1 sub-pixels among the sub-pixels of the fourth pixel group and one sub-pixel among the sub-pixels of the third pixel group are driven during a second portion of the second scan on time.