Abstract:
A device for removing an implanted object from a body vessel includes an actuator having an elongated sheath extending therefrom, the elongated sheath including a proximal portion and a distal portion. A tubular outer member has a proximal end attached to the distal portion of the elongated sheath, with a ramped surface at a distal end of the tubular outer member which constricts a diameter of a bore formed in the tubular outer member. A tubular inner member is located within the tubular outer member, the tubular inner member including a proximal end operably connected to the actuator and a distal end opposite the proximal end, the distal end of the tubular inner member including a plurality of resiliently flexible blades positioned to interact with the ramped surface of the tubular outer member such that the ramped surface is operable to deflect the resiliently flexible blades radially inwardly as the tubular inner member is advanced distally within the tubular outer member.
Abstract:
A device for extending a lead according to some embodiments includes a body, a coil element coupled to the body, the body configured to cover the coil element during use, the coil element comprising an inner lumen sized to receive an outer surface of a lead, the coil element is movable between a first configuration in which the coil element slides over the lead, and a second configuration in which at least some coils grip the outer surface of the lead; an actuation mechanism operatively coupled to the coil element, the actuation mechanism configured to move the coil element between the first and second configurations; and a tether coupled to the lead via the body, the coil element, and/or actuation mechanism, the tether configured to extend further proximally than a proximal-most end of the lead and configured to transfer tension force applied to the tether to the lead.
Abstract:
Methods and devices for an optical assembly for a laser generator comprise: a laser source producing a first beam of light and an optical assembly. The optical assembly comprises a prism. The prism has a bottom surface configured to receive a first beam at an incoming angle of incidence relative to a first surface normal, and a hypotenuse surface configured to transmit, at an exit angle relative to a second surface normal, a second beam having a second aspect ratio. The optical assembly further comprises a plano-convex lens configured to transmit the second beam to a coupler. The coupler comprises a first coupling plane at a first distance from the plano-convex lens and a second coupling plane at a second distance from the plano-convex lens. The combination of the prism and the plano-convex lens is configured to change the beam divergence, so that the first coupling plane has a third aspect ratio and the second coupling plane has a fourth aspect ratio.
Abstract:
A system for ablation and removal of occlusions from blood vessels is provided. Laser cutting systems and mechanical cutting systems are provided in catheter devices, the cutting systems operable to ablate, cut, dislodge, and otherwise remove occlusions within a blood vessel that may limit or prevent proper circulation. Pulsed aspiration systems are further provided, the pulsed aspiration systems operable to remove ablated, cut, or dislodged material without excessive or unnecessary removal of blood and fluid.
Abstract:
A device for extending a lead according to some embodiments includes a body, a coil element coupled to the body, the body configured to cover the coil element during use, the coil element comprising an inner lumen sized to receive an outer surface of a lead, the coil element is movable between a first configuration in which the coil element slides over the lead, and a second configuration in which at least some coils grip the outer surface of the lead; an actuation mechanism operatively coupled to the coil element, the actuation mechanism configured to move the coil element between the first and second configurations; and a tether coupled to the lead via the body, the coil element, and/or actuation mechanism, the tether configured to extend further proximally than a proximal-most end of the lead and configured to transfer tension force applied to the tether to the lead.
Abstract:
Methods and devices for separating an implanted object, such as a pacemaker lead, from tissue surrounding such object in a patient's vasculature system. Specifically, the surgical device includes a handle, an elongate inner sheath and a circular cutting blade that extends from the distal end of the sheath upon actuating the handle. The circular cutting blade is configured to engage the tissue surrounding an implanted lead and cut such tissue in a coring fashion as the surgical device translates along the length of the lead, thereby allowing the lead, as well as any tissue remaining attached to the lead, to enter the device's elongate shaft. The surgical device has a barrel cam cylinder in the handle assembly that imparts rotation of the blade and a separate cam mechanism in the tip of outer sheath assembly that imparts and controls the extension and retraction of the blade. The barrel cam cylinder and cam mechanism cooperate to cause the blade to rotate in a first direction and extend from and retract in the outer sheath due to a first actuation of the handle and to rotate in a second direction and extend and retract in the outer sheath due to a second actuation of the handle. The inner sheath and outer sheath are constructed of laser-cut hypotubes, thereby allowing the surgical device, particularly the sheath assembly, to have a smaller profile for navigating smaller sized vasculature.
Abstract:
Laser energy delivery devices and methods are provided. A laser energy delivery device may include a housing, and a coupling is carried by the housing and adapted to couple to a laser energy generator. A sheath is carried by the housing, and the sheath includes a distal end adapted to be disposed in the subject. A plurality of transport members are carried by the sheath, and the plurality of transport members are adapted to receive laser energy at the coupling, transmit laser energy through the sheath, and deliver laser energy to the subject. A fluid-driven motor is carried by the housing and adapted to be driven upon receiving a fluid from a fluid source. A drive wire is carried by the sheath and eccentrically coupled to the distal end of the sheath, and the drive wire is adapted to be rotatably driven by the fluid-driven motor and rotates to eccentrically rotate the distal end of the sheath.
Abstract:
Methods and devices for separating an implanted object, such as a pacemaker lead, from tissue surrounding such object in a patient's vasculature system. Specifically, the surgical device includes a handle, an elongate sheath and a circular cutting blade that extends from the distal end of the sheath upon actuating the handle. The circular cutting blade is configured to engage the tissue surrounding an implanted lead and cut such tissue in a coring fashion as the surgical device translates along the length of the lead, thereby allowing the lead, as well as any tissue remaining attached to the lead, to enter the device's elongate shaft. The surgical device has a barrel cam cylinder in the handle assembly that imparts rotation of the blade and a separate cam mechanism in the tip of outer sheath assembly that imparts and controls the extension and retraction of the blade. The barrel cam cylinder and cam mechanism cooperate to cause the blade to rotate in a first direction and extend from and retract in the outer sheath due to a first actuation of the handle and to rotate in a second direction and extend and retract in the outer sheath due to a second actuation of the handle.
Abstract:
Methods and devices for separating an implanted object, such as a pacemaker lead, from tissue surrounding such object in a patient's vasculature system. Specifically, the surgical device includes a handle, an elongate inner sheath and a circular cutting blade that extends from the distal end of the sheath upon actuating the handle. The circular cutting blade is configured to engage the tissue surrounding an implanted lead and cut such tissue in a coring fashion as the surgical device translates along the length of the lead, thereby allowing the lead, as well as any tissue remaining attached to the lead, to enter the device's elongate shaft. The surgical device has a barrel cam cylinder in the handle assembly that imparts rotation of the blade and a separate cam mechanism in the tip of outer sheath assembly that imparts and controls the extension and retraction of the blade. The barrel cam cylinder and cam mechanism cooperate to cause the blade to rotate in a first direction and extend from and retract in the outer sheath due to a first actuation of the handle and to rotate in a second direction and extend and retract in the outer sheath due to a second actuation of the handle. The inner sheath and outer sheath are constructed of laser-cut hypotubes, thereby allowing the surgical device, particularly the sheath assembly, to have a smaller profile for navigating smaller sized vasculature.
Abstract:
A system and devices for ablation and removal of occlusions from blood vessels is provided. Laser cutting systems and mechanical cutting systems are provided in catheter devices, the cutting systems operable to ablate, cut, dislodge, and otherwise remove occlusions within a blood vessel that may limit or prevent proper circulation. Catheter systems comprise distal end features adapted to cut and remove at least portions of an occlusion that generally correspond to dimensions of an inner lumen of a catheter.