Abstract:
A power transmission device that is capable of automatic speed switching according to external load is disclosed, including a frame in which a transmission mechanism and a torque feedback mechanism are received. The torque feedback mechanism includes a torque resistant member so that when the load torque is smaller than its resistant torque, the speed reduction mechanism of the transmission mechanism is retained at a first, high-speed low-torque stage. When the load torque is larger than its resistant torque, a sliding ring of the torque feedback mechanism pushes a shifting gear so that the sped reduction mechanism is shifted to a second, low-speed high-torque stage. The speed reduction mechanism automatically shifts the speed reduction mechanism when the load torque increases or reduces so that the mechanical efficiency of the transmission device can be increased.
Abstract:
A nut includes base portion forming an inner threaded bore and a first sun gear. cap forms a second sun gear of which the teeth is different from that of the first sun gear. The cap is rotatably mounted to the base with the first and second sun gears opposing and coaxial with each other. A control ring carries planetary gears engaging both the first and second sun gears. The nut secures a rotatable member of a rotary machine to a threaded driving axle. The nut is initially and loosely tightened on the axle by manually rotating the control ring. The cap has a high friction surface engaging the rotatable member. When the axle starts to rotate, a relative rotation occurs between the rotatable member and the axle which causes the cap to rotate with respect to the base. The rotation of the cap is transmitted to the base by the planetary gears to securely and completely tighten the nut. To release the nut, manual rotation of the control ring causes the base to rotate therewith in a speed reduced fashion due to the difference in teeth between the cap and the base. A small torque applied to the control ring is then converted into a large torque acting upon the base to readily loosen the nut.
Abstract:
A locking device is provided between a gear train and an output shaft of a power hand tool. Pawls are arranged in a central bore of a fixed ring with an outer face thereof opposing an inner circumference of the central bore with a tiny gap therebetween. A coupler drivingly engages the shaft and the retention rings whereby when the coupler is rotated by the gear train, the coupler drives the disk and the pawls simultaneously and thus allowing the shaft to be rotated without constraint. When a user manually rotates the output shaft, the disk is rotated while the pawls are prevented from rotation about the first axis which causes a rotation of each pawl about the second axis leading to an interference between the outer face thereof and the inner circumference of the fixed ring thereby preventing the shaft from being further rotated.