Abstract:
A seal support structure is provided for a circumferential seal. In one embodiment, the seal support structure includes an engine support structure, a seal support, and a shoulder joining the engine support and seal support. The shoulder offsets the engine support from the seal support, and the shoulder and the seal support structure are configured to dampen vibration for the circumferential seal. The seal support structure may employ one or more dampening elements or materials to interoperate with a seal support structure to dampen vibration to a seal system.
Abstract:
A seal ring system is provided. The seal ring system comprises a segment defining a slot, a pedal along the slot, and an opening offset from the slot. A retention fastener may be disposed in the opening. A seal ring system is also provided comprising a first segment defining a first opening, a second segment defining a second opening, and a retention fastener extending through the first and second openings. The retention fastener configured to allow relative radial movement of the first segment and the second segment. A seal is further provided comprising a seal ring having a central axis, a petal extending radially inward with respect to the central axis of the seal ring, and a sealing disk axially proximate the seal ring. The sealing disk may have a seal shoe configured as a primary seal. The petal may extend toward the seal shoe.
Abstract:
Non-contacting dynamic seals having wave springs are disclosed herein. A non-contacting dynamic seal may have a shoe coupled to an outer ring by an inner beam and an outer beam. A wave spring may be located between the inner beam and the outer beam, between the shoe and the inner beam, or between the outer beam and the outer ring. The wave spring may damp vibrations in the inner beam and the outer beam.