Abstract:
By way of overview and introduction, various embodiments of the apparatus, systems and methods described herein are directed improved approaches to aligning and standardizing different total spectral radiance factor shapes measured with different instruments. Furthermore, in one or more configurations and approaches, the disclosure presented herein is directed to obtaining a whiteness calibration value for use in sample measurements without the need of UV filter adjustments.
Abstract:
In accordance with particular implementations of the invention described herein, a sample for analysis is illuminated under each of one or more narrow-band light sources. The light incident upon this sample is received by a sensor that generates measurement data in response thereto. One or more processors are configured to receive the measurement data and derive an excitation response curve and a fluorescent response curve from the measurement data. The processor is further configured to generate a fluorescent profile value using measurements from the fluorescent response curve for each of the captured narrow band measurement data and an excitation profile value corresponding to the area under the fluorescence curve divided by the area under the excitation curve. The generated fluorescent profile and excitation profile are both output as a dataset providing improved measurement values over similar approaches in the art.
Abstract:
In one example, an initial transform is stored for converting wavelength channel responses of a color measurement instrument to color readings. The initial transform is set in-factory by a manufacturer of the color measurement device. A color selection of a sample is subsequently retrieved from a database, where the color selection was made by an end user in response to a color reading by the color measurement instrument using the initial transform. An adjustment to the initial transform is calculated using the color selection. The adjustment is then sent to the color measurement instrument for use in making future color measurements.
Abstract:
A system and method are disclosed for correcting the color of microscope images for different illuminants. The system includes a microscope having at least one image setting value selector with a plurality of pre-set positions, and an optical train having a distal end and a proximal end and being configured to convey illumination. The optical train is further configured to allow introduction of a calibration slide into the optical train of the microscope at a plurality of possible positions, each position being a conjugate plane of the sample plane, when the sample is in focus. The calibration slide incorporates an integral transmission filter array of known transmission values.
Abstract:
In the disclosure provided herein, the described apparatus, systems and methods are directed to compensation of errors caused by the difference between the specular port and the sphere in a sphere-based color-measurement instrument, and improvement of the performance of the instrument. In one or more implementations, described approaches eliminate the need for hardware replacement, and therefore reduce costs associated with the operation of color measurement instruments.
Abstract:
In the disclosure provided herein, the described apparatus, systems and methods are directed to compensation of errors caused by the difference between the specular port and the sphere in a sphere-based color-measurement instrument, and improvement of the performance of the instrument. In one or more implementations, described approaches eliminate the need for hardware replacement, and therefore reduce costs associated with the operation of color measurement instruments.
Abstract:
A method has been developed to improve the stability of a color measurement system that measures reflectances using matrix-transformation method. The transformation matrix can be obtained by training with a raw measurement matrix and a master reflectance matrix. The raw measurement matrix can be stacked with one or more of its variations, with each variation being some random noise added onto a part or the whole original raw signal matrix. The same number of master reflectance matrices are also stacked to match the size and sample ordering of the raw measurement matrix. The resulting transformation matrix will be more stable and less sensitive to the measurement noise.
Abstract:
A method includes determining a fielded color measurement instrument is not calibrated to measure light emitted by a fielded light emitting device, assembling a calibration matrix, such that a product of the calibration matrix multiplied by a response of the fielded color measurement instrument to the light emitted by the fielded light emitting device is a triplet that corresponds to a Commission Internationale de L'éclairage XYZ color space, wherein the calibration matrix contains measurements made by the fielded color measurement instrument of a first plurality of lights emitted by the fielded light emitting device and measurements made by a spectroradiometer of a second plurality of lights emitted by a reference light emitting device of a same make and model as the fielded light emitting device, wherein the spectroradiometer is located remotely from the fielded color measurement instrument, and storing the calibration matrix on the fielded color measurement instrument.
Abstract:
A processing system of a mobile device acquires an image of an object of a target color, wherein the image was captured by an integrated digital camera of the mobile device, calculates a first plurality of values that describes the target color, and wherein the calculating is based on an analysis of a pixel of the image, and identifies a first candidate color from among a plurality of candidate colors, wherein each candidate color in the plurality of candidate colors is associated with a second set of values that describes the each candidate color, and wherein the second set of values describing the first candidate color matches the first set of values more closely than any second set of values associated with another candidate color of the plurality of candidate colors.
Abstract:
Embodiments of the present invention are directed towards systems, methods and computer program products for correcting inter-instrumentation variation among color measurement devices. In one particular implementation, a method for correcting inter-instrument variation among color measurement devices includes obtaining a set of color measurements of an item under analysis. The described approach also includes accessing a conversion model, wherein the conversion module has been generated using one or more ANN back propagated over a collection of data points, where the data points correspond to measurements of a color standard using devices from a control device batch and a test device batch. Using the conversion module, a processor is configured to transform the set of color measurements into a calibrated color measurement set. The calibrated color measurement set is then output to at least one display, memory or remote computing device.