Abstract:
A composition that includes solid lubricant nanoparticles and an organic medium is disclosed. Also disclosed are nanoparticles that include layered materials. A method of producing a nanoparticle by milling layered materials is provided. Also disclosed is a method of making a lubricant, the method including milling layered materials to form nanoparticles and incorporating the nanoparticles into a base to form a lubricant.
Abstract:
The present invention relates to additives for use in lubricant compositions to processes for producing the additives, and to the use of the additives in lubricants and in systems that are lubricated. More specifically, the additive includes a capped particle comprising: (i) one or more core particles wherein the core particle is an inorganic particle having a dimension less than about 5 μm; and (ii) one or more multi-block copolymers attached to the inorganic particles, wherein the multi-block copolymer comprises a) at least one nonpolar polymer block; b) at least one first polar polymer block; and c) at least one second polar polymer block; wherein the nonpolar polymer block is interposed between the first polar polymer block and the second polar polymer block, the first polar polymer block is attached to the core particle, and at least a portion of the second polar polymer block is not attached to the core particle. When used in a lubricant to lubricate a metallic surface of a workpiece, the capped particle preferably adhere to the metallic surface of the workpiece.
Abstract:
A multilayered sliding member 51 includes: a backing plate 52 formed of a steel plate; a porous metal sintered layer 53 formed integrally on the surface of the backing plate 52; and a sliding layer 54 constituted of a synthetic resin composition filling pores of, and coating the surface of, the porous metal sintered layer 53, the synthetic resin composition being composed of 5 to 30% by weight of a barium sulfate, 1 to 15% by weight of a magnesium silicate, 1 to 25% by weight of a phosphate, 0.5 to 3% by weight of a titanium oxide, and the balance of a polytetrafluoroethylene resin.
Abstract:
A composition comprises a sulphur free reaction product of: (a)(i) a hydrocarbyl substituted aromatic compound containing an acidic group selected from the group consisting of a carboxylic group, a hydroxyl group and mixtures thereof; and (a)(ii) an organic nitrogen-containing base reacted with the acidic group. The composition is obtained by a preparatory process and is useful in a method for lubricating an internal combustion engine to include where the lubricant has reduced levels of sulphur, phosphorus and sulphated ash.
Abstract:
The present invention provides a grease composition (7) which has a low friction and a low viscosity and is durable at a high temperature and a grease-sealed bearing (1) in which the grease composition is enclosed. The grease composition contains base oil, a thickener, and an additive. The base oil contains an ionic liquid consisting of a cation component and an anion component. The additive contains a corrosion inhibitor such as nitrites, molybdates or dibasic acid salts. The thickener is fluorine resin such as polytetrafluoroethylene. The grease composition (7) is applied to a periphery of each rolling element (4) of the grease-sealed bearing (1).
Abstract:
The invention relates to thermally conductive greases that may contain carrier oil(s), dispersant(s), and thermally conductive particles, wherein the thermally conductive particles are a mixture of at least three distributions of thermally conductive particles, each of the at least three distributions of thermally conductive particles having an average (D50) particle size which differs from the other average particle sizes by at least a factor of 5.
Abstract:
The present invention provides lubricating grease which is excellent in durability at a high temperature, restrains a reaction from occurring between fluorine and steel, and has a long life; and a rolling bearing in which the lubricating grease is enclosed. The lubricating grease contains perfluoropolyether oil as a base oil thereof and fluorocarbon resin powder as a thickener thereof. The lubricating grease further contains an additive containing a substance capable of forming a film on a metal surface. The substance is a diurea compound having an —NH— bond in a molecular structure thereof, an organic-acid metal salt such as sodium sebacate, molybdate such as potassium molybdate or sodium molybdate, or a bismuth-containing compound such as bismuth sulfate. The rolling bearing has an inner ring and an outer ring disposed concentrically with each other, a plurality of rolling elements interposed between the inner ring and the outer ring, and a retainer dividedly holding the rolling elements. The lubricating grease is enclosed on the periphery of the rolling elements.
Abstract:
Lubricant compositions contain a blend of a lubricating oil and a colloidal dispersion of particles of at least one iron compound and an amphiphilic agent; such compositions are useful for operating an engine, more particularly a diesel engine, which is equipped with an exhaust system fitted with a particle filter, wherein the particles present in the exhaust gases are trapped on the filter and, periodically, the trapped particles are burned, and further wherein the subject compositions are employed as engine lubricants with a view to catalyzing the combustion of the trapped particles.
Abstract:
The invention relates to thermally conductive greases that may contain carrier oil(s), dispersant(s), and thermally conductive particles, wherein the thermally conductive particles are a mixture of at least three distributions of thermally conductive particles, each of the at least three distributions of thermally conductive particles having an average (D50) particle size which differs from the other average particle sizes by at least a factor of 5
Abstract:
A method for impregnating a porous surface with a magneto-rheological substance includes the steps of providing a porous surface with a porosity sufficient to receive the magneto-rheological substance within the pores and covering a portion of one side of the porous surface with the magneto-rheological substance. The method further includes the step of providing a magnet on the opposite side of the porous surface to apply a magnetic field and draw the magneto-rheological substance into the porous surface.