Abstract:
A control apparatus for operating a fuel injector is provided. The control apparatus includes an electronic control unit configured to: identify when the engine is running under a fuel cut-off condition, and then perform a learning procedure to determine an actual value of energizing time that causes the fuel injector to inject a target fuel quantity. The learning procedure provides for the electronic control unit to perform several test injections with different energizing time values and measure an engine torque value caused by the test injection. The measured engine torque values and their correspondent energizing time values are used to extrapolate the actual value of the energizing time as the value that corresponds to a reference value of engine torque that is consistent with the target fuel quantity.
Abstract:
When injecting fuel from a direct injector and a port injector such that a requested fuel injection amount is obtained in an internal combustion engine, the direct injector is driven in the following manner. After a target fuel injection amount for the fuel injection with the higher priority among fuel injection in the late stage of a compression stroke and fuel injection in the early stage of an intake stroke in the direct injector has been set on the basis of the engine operating condition, the target fuel injection amount for the fuel injection with the lower priority is set on the basis of the engine operating condition. Moreover, the direct injector is driven in such a manner that the target fuel injection amount for each of the abovementioned fuel injections set in this manner is obtained.
Abstract:
An exhaust gas purification system with a diesel particulate filter in an exhaust passage of an internal combustion engine. A surface filtration cake layer formation enhancement control or a particulate matter generation amount reduction control is temporarily performed immediately after a forced regeneration treatment on the diesel particulate filter. The system and a method are directed to a particulate matter slip-through phenomenon in which the particulate matter slip-through amount temporarily increases immediately after particulate matter re-combustion in a forced regeneration treatment on the diesel particulate filter. The diesel particulate filter is disposed in the exhaust passage of the internal combustion engine and reduces the total amount of particulate matter emitted to the atmosphere immediately after the particulate matter re-combustion in the forced regeneration treatment on the diesel particulate filter.
Abstract:
A control system for an aero compression combustion drive assembly, the aero compression combustion drive assembly having an engine member, a transmission member and a propeller member, the control system including a sensor for sensing a pressure parameter in each of a plurality of compression chambers of the engine member, the sensor for providing the sensed pressure parameter to a control system device, the control system device having a plurality of control programs for effecting selected engine control and the control system device acting on the sensed pressure parameter to effect a control strategy in the engine member. A control method is further included.
Abstract:
A vehicle is disclosed which includes: an engine; a catalyst purifying exhaust gas of the engine; a grille shutter adjusting an opening area of a radiator grille; and an electronic control unit configured to: (a) control an injection quantity of fuel to be supplied to the engine, (b) detect a malfunction of the grille shutter in a state where the grille shutter is closed, and (c) increase the injection quantity when the malfunction is detected in comparison to when the malfunction is not detected.
Abstract:
Methods and systems are provided for reducing late burn induced cylinder pre-ignition events. Forced entry of residuals from a late burning cylinder into a neighboring cylinder may be detected based on engine block vibrations sensed in a window during an open exhaust valve of the late burning cylinder. In response to the entry of residuals, a pre-ignition mitigating action, such as fuel enrichment or deactivation, is performed in the neighboring cylinder.
Abstract:
A control system for a spark-ignition internal combustion engine configured to produce tumble flow in a cylinder is provided. The spark-ignition internal combustion engine includes an ignition plug configured to ignite an air-fuel mixture in the cylinder. The control system includes a tumble flow rate controller configured to change a position of a vortex center of the tumble flow as viewed in a direction of a center axis of the cylinder, so as to control a flow rate of the tumble flow around the ignition plug at the ignition timing of the ignition plug.
Abstract:
A method and a device for regulating the combustion noise of an internal combustion engine includes operating the internal combustion engine, detecting a profile of the cylinder pressure in the engine over time, determining a profile of the gradient of the cylinder pressure over time, defining the temporal position of the maximum of the pressure gradient in the determined profile, and modifying at least one parameter that is relevant to the combustion of fuel in the engine, wherein the pressure profile is detected, the pressure gradient is determined, and the temporal position of the maximum of the pressure gradient is defined until the temporal position of the maximum of the pressure gradient begins to fluctuate within a plurality of engine combustion cycles that follow one another. Furthermore, an engine controller having such a device and a computer program for carrying out such a method are described.
Abstract:
A control unit (2) for a fuel injector (3) comprising a solenoid actuator (31) having an armature (33), the control unit configured to drive a current through an electromagnet coil (34) of the solenoid actuator in a voltage mode during at least a portion of an injection cycle.
Abstract:
A method for use with an internal combustion engine having both donor and non-donor cylinder groups includes: injecting a fuel in one, or both, of the groups; injecting a second fuel in both groups at a first substitution rate; recirculating an exhaust emission from the donor cylinder group to both groups; combusting a mixture of air, the first fuel, the second fuel and the exhaust emission in both cylinder groups; and lowering the substitution rate of the second fuel in one, or both, of the cylinder groups. Other methods of controlling an engine and a system are also disclosed.