Abstract:
Semiconductor systems are provided. The semiconductor system includes a controller and a semiconductor device. The controller is suitable for generating command signals and address signals. The semiconductor device is suitable for electrically disconnecting a first local line from a second local line in response to an input control signal enabled in a read mode. The read mode is set according to a logic combination of the command signals. Further, the semiconductor device is suitable for sensing and amplifying a data on the first local line or the second local line according to the address signals to output the amplified data through an input/output line.
Abstract:
A non-volatile storage device comprises: a substrate; a monolithic three dimensional array of memory cells; word lines connected to the memory cells; global bit lines; vertical bit lines connected to the memory cells; and a plurality of double gated vertically oriented select devices. The double gated vertically oriented select devices are connected to the vertical bit lines and the global bit lines so that when the double gated vertically oriented select devices are activated the vertical bit lines are in communication with the global bit lines. Each double gated vertically oriented select device has two gates that are offset from each other with respect to distance to the substrate. Both gates for the double gated vertically oriented select device need be in an “on” condition for the double gated vertically oriented select devices to be activated.
Abstract:
A memory device to sense a content of a memory cell includes: a pair of bit-lines; a memory cell coupled between the bit-lines; and a sensing circuit. The sensing circuit has at least two inputs for receiving respective currents from a current conveyor, and senses, when operating in a sensing mode, a difference between output currents. The difference between the output currents represents a content of the memory cell. The sensing circuit includes an output for outputting an output signal that represents the content of the memory cell. The current conveyor isolates the sensing circuit from the bit-lines, when the current conveyor is operated in an isolation mode, and has at least two outputs for providing, to the sensing circuit, output currents representing bit-lines currents; and equalizing the output currents before the current conveyor starts to operate in a current conveying mode.
Abstract:
A device, comprising: first and second signal lines; first and second transistors of first conductivity type coupled in series between first and second signal lines and coupled to each other at first node; third and fourth transistors of second conductivity type coupled in series between first and second lines and coupled to each other at second node; power supply node coupled in common to first and second nodes; fifth transistor of first conductivity type coupled between first and second signal lines; and sixth transistor of second conductivity type coupled between first and second signal lines, wherein each of first, second and fifth transistors is configured to receive first control signal at gate electrode thereof, each of the third and fourth transistors is configured to receive second control signal at gate electrode thereof, and sixth transistor is configured to receive third control signal at gate electrode thereof.
Abstract:
A semiconductor device comprises a first pair of signal lines and a first control circuit. The first control circuit precharges each of the first pair of signal lines to a first voltage in response to a precharge signal, and changes the voltage level of each of the first pair of signal lines to a second voltage different from the first voltage when a deep power down signal is input.
Abstract:
A semiconductor device comprises a first pair of signal lines and a first control circuit. The first control circuit precharges each of the first pair of signal lines to a first voltage in response to a precharge signal, and changes the voltage level of each of the first pair of signal lines to a second voltage different from the first voltage when a deep power down signal is input.
Abstract:
The present invention relates to a semiconductor device, and more particularly, to a semiconductor memory device capable of supplying and measuring an electric current through a pad. The semiconductor device includes a memory cell, a data pad configured to receive data to be programmed into the memory cell or a write current to be supplied to the memory cell from an external device, and output data read out from the memory cell or a cell current flowing from the memory cell to the external device, and a path switching unit configured to set up a path so that the memory cell and the data pad are directly coupled when a test operation is performed.
Abstract:
A semiconductor memory device includes a first first-type well including a first cell array for storing a data to apply the data to one of a first bit line and a first bit line bar, and a first precharge MOS transistor having a second-type channel for equalizing voltage levels of the first bit line and the first bit line bar; a first second-type well including a first sense amplifying MOS transistor having a first-type channel for sensing and amplifying the signal difference between the first bit line and the first bit line bar, and a first connection MOS transistor; and a second first-type well including a second sense amplifying MOS transistor having a second-type channel for sensing and amplifying the signal difference between the first bit line and the first bit line bar.
Abstract:
Each I/O channel between a controller and one or more memory dice of a memory device has a driver on one end and a receiver at the other end. The receiver is optionally terminated with a pseudo open-drain (“POD”) termination instead of the conventional center-tapped (“CTT”) termination to save energy. During a read operation, data is driven from the memory die to a POD terminated receiver circuit in the controller. With POD termination, the degradation in performance due to the more non-linear driver in the memory die, fabricated for example in the NAND technology processing, is alleviated by an adaptive reference voltage level adjustment in the receiver circuit of the controller. Optionally, the receiver circuit of a memory die is also provided with an adaptive reference level adjustment.
Abstract:
According to one embodiment, a memory includes a temporary storage area which temporary stores data in a read/write operation to an array. The temporary storage area comprises a clamp FET connected between a first data bus and a second data bus, a first precharge FET connected between the first data bus and first potential, a second precharge FET connected between the second data bus and the first potential, a first storage area connected to the first data bus, and a second storage area connected to the second data bus. The control circuit is configured to generate a precharge state in which the first data bus is precharged to the first potential and the second data bus is precharged to a second potential lower than the first potential, when the data is transferred from the second storage area to the first storage area.