Abstract:
An organic light emitting diode (OLED) display is disclosed. In one embodiment, the OLED display includes i) an OLED comprising i) a first electrode, ii) an organic emission layer formed on the first electrode, and iii) a second electrode formed on the organic emission layer, ii) a dual brightness enhancement film (DBEF) formed over the second electrode of the OLED, iii) a first polarizing plate formed on the DBEF, iv) a cholesteric liquid crystal (CLC) layer formed on the first polarizing plate, v) a phase delay plate that is a ¼ wavelength plate formed on the CLC layer and vi) a second polarizing plate formed on the phase delay plate.
Abstract:
An organic light emitting diode display includes a substrate, a pixel electrode, a pixel defining film, a light absorbing layer pattern, an organic light emitting layer and a common electrode. The pixel electrode is formed on the substrate, and the pixel defining film formed on the substrate has an opening to expose the pixel electrode. The light absorbing member divides the opening into a plurality of sub-emitting areas within the opening of the pixel defining film. The organic light emitting layer is formed on the pixel electrode, and the common electrode is formed on the organic light emitting layer.
Abstract:
An organic light emitting device is disclosed. In one embodiment, the device includes a plurality of pixels formed on a substrate, wherein each of the pixels includes: a first electrode layer formed on the substrate; an organic emission layer formed on the first electrode layer and a second electrode layer formed on the organic emission layer. Further, at least one of the first electrode layers of the pixels is externally patterned.
Abstract:
An organic light-emitting display device includes a substrate; a gate electrode disposed on the substrate, the gate electrode including a first portion of a metal oxide layer and a metal layer; a pixel electrode disposed on the substrate and including a second portion of the metal oxide layer; a gate insulating layer covering the gate electrode; a semiconductor layer disposed on the gate insulating layer and including a channel region, and first and second regions disposed outside the channel region; a first electrode connected to the first region; a second electrode connected to the second region and the pixel electrode; an ohmic contact layer disposed between the first region and the first electrode and between the second region and the second electrode; a pixel defining layer including an opening exposing the pixel electrode; an organic light-emitting layer disposed on the pixel electrode; and an opposite electrode covering the organic light-emitting layer.
Abstract:
A pixel of an OLED display includes: a thin film transistor (TFT) including a gate electrode, a source electrode, and a drain electrode; a planarization layer on the TFT and including a contact hole at least partially exposing the drain electrode; a pixel electrode on the planarization layer and coupled to the drain electrode of the TFT through the contact hole; and an organic emission layer on the pixel electrode. The pixel electrode includes a corner-cube pattern facing the organic emission layer.
Abstract:
An organic light emitting display apparatus includes a polarizer film arranged on a substrate or an encapsulation substrate that faces an image realized by a display unit, wherein the polarizer film includes a plurality of regions having different light transmittances. By using the polarizer film, a luminance difference due to a voltage drop may be compensated for so that a uniform luminance may be obtained when the image is realized.
Abstract:
Provided is an organic light emitting display device sealed maintaining durability by preventing permeation of oxygen and moisture and improving impact resistance. The light emitting display device includes a first substrate; a second substrate disposed facing toward the first substrate; an emission unit disposed between the first substrate and the second substrate and comprising a plurality of light emitting devices; a first sealant disposed between the first substrate and the second substrate, and surrounding the emission unit and combining the first substrate and the second substrate; a first region formed between around a flat portion of the first sealant and a margin of the second substrate; a second region formed between around a corner of the first sealant and a margin of the second substrate; a second sealant disposed in the first region; and a third sealant disposed in the second region.
Abstract:
An organic light emitting diode display device constructed with an organic light emitting element including a first electrode, an organic emission layer, and a second electrode sequentially laminated together, a transmittance control layer formed on the organic light emitting element, a selective reflective layer formed on the transmittance control layer, a polarizing plate formed on the selective reflective layer, and a phase retardation plate disposed between the organic light emitting element and the polarizing plate.
Abstract:
An organic light emitting diode display including: a substrate; pixel electrodes formed on the substrate; a pixel defining layer having openings exposing the plurality of pixel electrodes, formed on the substrate; spacers formed on the pixel defining layer; organic emission layers formed on the pixel electrodes; a common electrode formed on the organic emission layers; and color filters formed on the common electrode, in the openings of the pixel defining layer.
Abstract:
An organic light emitting diode display including: a substrate; a plurality of pixel electrodes formed on the substrate; a pixel defining layer formed on the substrate, having openings exposing the pixel electrodes; a plurality of spacers disposed on the pixel defining layer; organic emission layers formed on the pixel electrodes; a common electrode formed on the organic emission layers; and a capping layer formed on the common electrode, to cover the organic emission layers.