Abstract:
A method having the steps of measuring a geometry of a toothing using an optical measuring system, wherein a numerical aperture of the optical measuring system is adjustable and the numerical aperture of the optical measuring system is adapted depending on at least one geometric parameter of the toothing to be measured and/or is enlarged or reduced.
Abstract:
Method for measuring a workpiece, comprising the method steps of: providing a workpiece, wherein the workpiece has a surface with a surface structure; predefining a geometric measured variable of the workpiece, wherein the geometric measured variable is a diameter of the workpiece and wherein the geometric measured variable and a nominal-actual deviation of the geometric measured variable are defined in a reference plane; predefining a measuring path; tactile sensing of measured values on the workpiece by bringing a measuring probe into contact with the surface of the workpiece and the measuring probe scans the workpiece in contact with the surface along the predetermined measuring path; computational determination of the geometric measured variable and the nominal-actual deviation of the geometric measured variable from the measured values within the reference plane; wherein the predefined measuring path lies at least partially outside the reference plane.
Abstract:
A method for automated positioning of a toothed workpiece, having the following method steps: providing a toothed workpiece, which has a machine-readable, workpiece-specific marking, such as a QR code, a barcode, an RFID tag, or the like; attaching the toothed workpiece on a spindle of a CNC-controlled multiaxis machine; automatically acquiring the marking of the workpiece; ascertaining an actual position of the workpiece in relation to the multiaxis machine on the basis of the marking; transferring the workpiece from the actual position into a setpoint position in relation to the multiaxis machine, before a machining and/or measuring method is carried out in the multiaxis machine.
Abstract:
A method for deburring bevel gears using a deburring tool, which comprises at least one cutting edge, having the following steps: rotationally driving the deburring tool around a deburring spindle axis, rotationally driving a bevel gear around a workpiece spindle axis, wherein the rotational driving of the deburring tool and the rotational driving of the bevel gear take place in a coupled manner with an inverse coupling transmission ratio, it is a continuous method for deburring, in which the cutting edge executes a relative flight movement in relation to the bevel gear, the relative flight movement is defined by a hypocycloid, and wherein a burr is removed at least on one tooth edge of a tooth gap in the region of the bevel gear toe and/or the bevel gear heel by a cutting contact of the cutting edge with the tooth edge.
Abstract:
Roughness measurement probe (15) for scanning a surface (F), comprising an integratingly operating device (20) and an optical scanning device (30), wherein the optical scanning device (30) is arranged directly on or in the integratingly operating device (20), wherein the integratingly operating device (20) is designed, when scanning the surface (F), to predetermine a mean distance between the roughness measuring probe (15) and a larger region of the surface (F), and wherein the optical scanning device (30) is designed, when scanning the surface (F), to optically scan a smaller region of the surface (F) in a contactless manner, wherein the integratingly operating device (20) comprises an optical arrangement which is designed as a virtual skid in such a way that it images a light spot (LF) on the surface (F).
Abstract:
Method for deburring gear wheels, for example, bevel gears, using a deburring brush, comprising at least N=1 brush bundles, having the following steps: rotationally driving the deburring brush about a spindle axis, rotationally driving a gear wheel or a bevel gear about a workpiece spindle axis, wherein the rotational driving of the deburring brush and the rotational driving of the gear wheel or the bevel gear take place in a coupled manner at a coupling transmission ratio, the method is a continuous method in which the at least N=1 brush bundle executes a relative flight movement in relation to the gear wheel or the bevel gear, the relative flight movement is defined by a hypocycloid or an epicycloid, and wherein a burr is removed at least on one tooth edge of a tooth gap by a contact of the at least N=1 brush bundle with the tooth edge.
Abstract:
Described is a device for machine tools or measuring apparatus for detecting the spatial position of a carriage movable in a coordinate axis along a guide with respect to a reference standard which is designed as a rectangular plate extending parallel to the guide of the carriage. Two opposed, parallel surfaces of the reference standard carry each a two-dimensional line grating. A position measuring system serves the function of determining continuously the spatial position of a support member fixedly connectible with the carriage. The position measuring system includes three optical incremental reading heads and one distance sensor. The support member is arranged on the movable carriage such as to prevent the support member from contacting the reference standard over the entire length of the travel while at the same time detection is being performed. Owing to the arrangement of the three reading heads and the distance sensor at accurately defined positions on the support member it is possible to determine the location and the spatial position of the support member and hence of the carriage connected therewith.