Abstract:
The present disclosure describes methods and apparatuses for improved transport block decoding in devices capable of wireless communication, which may include user equipment and network entities. For example, the present disclosure presents methods and apparatuses for decoding a code block from a plurality of code blocks corresponding to a transport block, obtaining a reliability indicator that identifies a reliability of the decoding of the code block, comparing the reliability indicator to a reliability threshold, and determining whether to decode a subsequent code block from the plurality of code blocks based on the comparing. Furthermore, these methods and apparatuses may include determining not to decode at least one subsequent code block of the transport block where the comparing indicates that the reliability indicator is less than the reliability threshold. As such, device power is not unnecessarily consumed by decoding likely superfluous code blocks.
Abstract:
Systems and methods are provided for channel estimation and timing synchronization in a wireless network. In an embodiment, a method is provided for time synchronization at a wireless receiver. The method includes decoding at least one TDM pilot symbol located at a transition between wide and local waveforms and processing the TDM pilot symbol to perform time synchronization for a wireless receiver. Methods for channel estimation at a wireless receiver are also provided. This includes decoding at least one TDM pilot symbol and receiving the TDM pilot symbol from an OFDM broadcast to facilitate channel estimation for a wireless receiver.
Abstract:
Methods and apparatus for position location in a wireless network. In an aspect, a method is provided that includes determining whether a symbol to be transmitted is an active symbol, wherein the symbol comprises a plurality of subcarriers, and encoding identification information on a first portion of subcarriers if it is determined that the symbol is the active symbol. The method also includes encoding idle information on a second portion of subcarriers if it is determined that the symbol in not the active symbol. In an aspect, an apparatus includes detector logic configured to decode a plurality of symbols to determine identification information that identifies a plurality of transmitters, and to determine a plurality of channel estimate associated with the plurality of transmitters. The apparatus also includes position determination logic configured to calculate a device position based on the plurality of transmitters and the plurality of channel estimates.
Abstract:
Systems and methods are provided for the transmission of waveforms to aid channel estimation, timing synchronization, and AGC bootstrapping in a wireless network. The method includes inserting at least one TDM pilot symbol located at a transition between wide area and local area waveforms to facilitate decoding of the transmission block.
Abstract:
An adaptive timing synchronization process dynamically adapts timing synchronization parameters for both wide and local area channels based on channel estimates. Timing synchronization parameters are dynamically adapted according to C/I estimates calculated from WID/LID energies. The timing synchronization algorithm 102 takes as the primary input, the current channel estimate 110 and produces an output comprising a correction to the current Fast Fourier Transform (FFT) sampling window position delta T (or offset) for locating the start of data within a current symbol 108. After dynamic parameter adjustment of noise filtering thresholds 104 and weak channel tap sensitivities 106 based on a calculated C/I from the channel estimate, a timing synchronization algorithm 102 locates the beginning of each continuous symbol by finding the boundary between the preamble, or cyclic prefix, and the useful data portions interlaced with pilots for channel information defining the start of a symbol 108.
Abstract:
The embodiments utilize OFDM symbols to communicate network IDs. The IDs are encoded into symbols utilizing the network IDs as seeds to scramble respective pilots that are then transmitted by utilizing the symbols. The pilots can be structured into a single OFDM symbol and/or multiple OFDM symbols. The single symbol structure for transmitting the network IDs is independent of the number of network ID bits and minimizes frequency offset and Doppler effects. The multiple symbol structure allows a much coarser timing accuracy to be employed at the expense of transmitting additional symbols. Several embodiments employ a search function to find possible network ID candidates from a transmitted symbol and a selection function to find an optimum candidate from a network ID candidate list.
Abstract:
An OFDM telecommunications system includes a transmitter and a receiver. The receiver includes a canceller configured to reduce inter-carrier interference (ICI) in an OFDM symbol in the frequency domain.
Abstract:
Systems and methods are provided for channel estimation and timing synchronization in a wireless network. In an embodiment, a method is provided for time synchronization at a wireless receiver. The method includes decoding at least one TDM pilot symbol located at a transition between wide and local waveforms and processing the TDM pilot symbol to perform time synchronization for a wireless receiver. Methods for channel estimation at a wireless receiver are also provided. This includes decoding at least one TDM pilot symbol and receiving the TDM pilot symbol from an OFDM broadcast to facilitate channel estimation for a wireless receiver.
Abstract:
In a multicasts wireless telecommunication system providing an aggregation of one or more independent data components as a flow, wherein the OIS is located at the latch point of the beginning of the superframe, and the OIS programming is latched at the superframe boundary, the improvement of deriving signal parameter information from Signaling Parameter Channel (SPC) symbols transmitted in a Forward Link only (FLO) network by deriving a time domain channel estimate by assuming each of the combinations for the signal parameter field in the scrambler seed and picking the signal parameter combination that yields the most energy in the time domain above a threshold value.
Abstract:
An adaptive thresholding technique eliminates suboptimum threshold values by adjusting for varying channel conditions to eliminate interference where no channel energy is present, without discarding viable taps having useful channel energy. The adaptive thresholding technique adaptively optimizes receive threshold values for both wide and local area channels based only on measured C/I ratios 300. Thresholds are calculated based on instantaneous C/I estimates and/or weighted average C/I estimates calculated from WID/LID energies obtained from the current superframe WIC/LIC symbols respectively. In alternate embodiments, thresholds are calculated based on instantaneous C/I estimates and/or weighted average C/I estimates calculated from WTPC and LTPC symbols for the wide and local area channels, respectively The present adaptive thresholding technique dynamically reduces the threshold as the C/I estimate increases to mitigate performance degradation due to removal of weak signal taps. There is a separate threshold for each of the 12 coding and modulation modes supported by an exemplary receiver.