摘要:
A method of transforming geologic data relating to a subsurface region between a geophysical depth domain and a geologic age domain is disclosed. A set of topologically consistent surfaces is obtained that correspond to seismic data. The surfaces are enumerated in the depth domain. An age is assigned to each surface in the depth domain. The age corresponds to an estimated time of deposition of the respective surface. An age mapping volume is generated. An extent of the age domain is chosen. A depth mapping volume is generated. Both the age mapping volume and the depth mapping volume are used to transform geophysical, geologic, or engineering data or interpretations between the depth domain and the age domain and vice versa. The geophysical, geologic, or engineering data or interpretations transformed by at least one of the age mapping volume and the depth mapping volume are outputted.
摘要:
A system and methods for analyzing seismic data are provided herein. The method includes identifying, via a computing device, a representation of a seismic data set (1802) and determining a number of feature descriptors corresponding to each of a number of aggregates within the representation (1804). The method also includes identifying a query relating to the representation and one or more vocabulary definitions relating to the query (1806), analyzing the representation to compute a likelihood that each of the aggregates satisfies the query (1808), and returning a result of the query (1810).
摘要:
A method and system are described for creating a subsurface model. In this method, discontinuous functions are interpolated in a subsurface model. The method extrapolates specified values over discontinuous manifolds by embedding the manifold in a higher-dimensional space that amplifies distances across discontinuities and thus eliminates special consideration to prevent extrapolation across discontinuities. The resulting subsurface model may be used in reservoir simulations and hydrocarbon operations.
摘要:
Method for segmenting a geophysical data volume such as a seismic data volume (10) for ranking, prioritization, visualization or other analysis of subsurface structure. The method takes any initial segmentation (11) of the data volume, and progressively reduces the number of segments by pair combination (13) so that an optimal stage of combination may be determined and used for analysis (15).
摘要:
Method and system are described for generating a stratigraphic model of a subsurface volume. Measured geophysical data are converted into a vector volume (106) by assigning to each sample in each trace in the data volume a vector representing dip, azimuth or confidence. Then a labeled volume is generated from the vector volume by assigning a label to each sample in an initial trace (1006), then selecting a propagation pattern (1008) and propagating the labels to other traces (1010). Horizons can be extracted (110) from the labeled volume, and utilized to enhance the process of producing hydrocarbons (114).
摘要:
A fully automated method for correcting errors in one interpretation (13) of seismic data based on comparison to at least one other interpretation (14) of the same subsurface region. The errors may occur in any feature of the seismic data volume, for example a horizon, surface, fault, polyline, fault stick, or geo-body. In some embodiments of the invention, an error may be a hole in a horizon (53), and the whole is patched by a piece of a horizon in another interpretation (55). In an alternative embodiment of the invention, a single interpretation may be used to repair itself, for example by identifying similarly shaped, adjacent horizons (67), and merging them (68).
摘要:
Method for automated and quantitative assessment of multiple direct hydrocarbon indicators (“DHI's”) extracted from seismic data. DHI's are defined in a quantitative way (33), making possible a method of geophysical prospecting based on quantification of DHI anomalies. Instead of working in a particular spatial region of seismic data pre-defined as a hydrocarbon opportunity, the present invention works on entire data volumes derived from the measured seismic data (31), and identifies opportunities based on quantified DHI responses. In some embodiments, a series of algorithms utilizes the geophysical responses that cause DHI's to arise in seismic data to search entire data sets and identify hydrocarbon leads based on the presence of individual and/or combinations of DHI's (34).