Abstract:
A dual coil half bridge converter adapted to be coupled to a dual coil actuator of a cylinder valve in an internal combustion engine is described. In one example, the converter has a first and second capacitor and a voltage source, where the converter is actuated via switches to individually energizing coils in said dual coil actuator. A voltage regulator is also shown for maintaining midpoint voltage during unequal loading of different actuator coils in the converter.
Abstract:
The invention relates to a flatness measurement and control system for metal strip, which makes it possible to obtain improved strip or coil quality by a simple and effective measurement of departures from flatness and to control the finishing parameters through the evaluation of a line pattern on the strip surface or on the end face of a coil as it is coiled.
Abstract:
An energy conversion system transfers energy between an energy source, or storage unit, and an electric device via a first port and a second port and at least one of receives and provides energy via a third port.
Abstract:
A power supply system is provided that can operate with energy storage units of varying voltages and temperatures, that can correct voltage and temperature deviations, and that can continue to provide power when an energy storage unit is inoperable. A power supply system is also provided that can recondition an energy storage unit during vehicle operation.
Abstract:
A dual coil half bridge converter adapted to be coupled to a dual coil actuator of a cylinder valve in an internal combustion engine is described. In one example, the converter has a first and second capacitor and a voltage source, where the converter is actuated via switches to individually energizing coils in said dual coil actuator. A voltage regulator is also shown for maintaining midpoint voltage during unequal loading of different actuator coils in the converter.
Abstract:
A valve actuator for actuating a valve in an internal combustion engine is disclosed, wherein the valve actuator includes at least one electromagnet having a coil wound about a core, at least one permanent magnet disposed at least partially within the core, and an actuating member disposed adjacent to the electromagnet, wherein the actuating member is coupled to a pivot and is configured to be pivotally moved by activation of the electromagnet to effect at least one of an opening and a closing of the valve.
Abstract:
A bi-directional dual coil half bridge converter adapted to be coupled to a dual coil actuator of a cylinder valve in an internal combustion engine is described. In one example, the converter has a first and second capacitor and a voltage source, where the converter is actuated via switches to individually energizing coils in said dual coil actuator. A voltage regulator is also shown for maintaining midpoint voltage during unequal loading of different actuator coils in the converter.
Abstract:
A valve actuator for an internal combustion engine is described having a core having a wound coil located therein, said core further having at least one permanent magnet located at least partially inside or outside said coil and positioned at an angle relative to a direction of movement of an armature. Further, various recesses, indentations, chamfers, bevels, and/or depressions may be included to affect flux leakage, and/or force generation.
Abstract:
A bi-directional dual coil half bridge converter adapted to be coupled to a dual coil actuator of a cylinder valve in an internal combustion engine is described. In one example, the converter has a first and second capacitor and a voltage source, where the converter is actuated via switches to individually energizing coils in said dual coil actuator. A voltage regulator is also shown for maintaining midpoint voltage during unequal loading of different actuator coils in the converter.
Abstract:
A valve actuator for actuating a valve in an internal combustion engine is disclosed, wherein the valve actuator includes at least one electromagnet having a coil wound about a core, at least one permanent magnet disposed at least partially within the core, and an actuating member disposed adjacent to the electromagnet, wherein the actuating member is coupled to a pivot and is configured to be pivotally moved by activation of the electromagnet to effect at least one of an opening and a closing of the valve.