Abstract:
Disclosed is a PCB including an embedded passive component and a method of fabricating the same. The PCB includes at least two circuit layers in which circuit patterns are formed. At least one insulating layer is interposed between the circuit layers. A pair of terminals is vertically formed through the insulating layers, plated with a first conductive material, and separated from each other by a predetermined distance. The embedded passive component is interposed between the terminals and has electrodes formed on both sides thereof. The electrodes are separated from the terminals by a predetermined distance and electrically connected to the terminals through a second conductive material.
Abstract:
An aspect of the present invention features a manufacturing method of a board on chip package. The method can comprise: (a) laminating a dry film on a carrier film, one side of which is laminated by a thin metal film; (b) patterning the dry film in accordance with a circuit wire through light exposure and developing process, and forming a solder ball pad and a circuit wire; (c) removing the dry film; (d) laminating an upper photo solder resist excluding a portion where the solder ball pad is formed; (e) etching the thin metal film formed on a portion where the upper photo solder resist is not laminated; (f) mounting a semiconductor chip on the solder ball pad by a flip chip bonding; (g) molding the semiconductor chip with a passivation material; (h) removing the carrier film and the thin metal film; and (i) laminating a lower photo solder resist under the solder ball pad. The board on chip package and the manufacturing method thereof according to the present invention can design a high density circuit since a circuit pattern is formed using a seed layer.
Abstract:
A printed circuit board and a method for manufacturing the same are disclosed. The manufacturing method includes: forming a first plating resist corresponding to the circuit pattern on a surface of each of a first carrier and a second carrier; forming a second plating resist corresponding to the pad on each of the surfaces; forming the pad by performing plating over each of the surfaces; stripping the second plating resists; forming the circuit pattern by performing plating over each of the surfaces; pressing the first carrier and the second carrier with an insulation layer interposed between the first carrier and the second carrier such that the circuit patterns face each other; and removing the first carrier and the second carrier. Since plating bars need not be used, the degree of freedom in designing circuits can be increased, and circuits of higher densities can be designed.
Abstract:
A carrier and a method for manufacturing a printed circuit board are disclosed. The method for manufacturing a printed circuit board may include: forming a first circuit pattern on each of a pair of release layers, which are attached respectively to either side of a base layer by adhesive layers; detaching the pair of release layers from the base layer; stacking and pressing the pair of release layers onto either side of an insulation substrate such that the first circuit patterns are buried in the insulation substrate; and separating the pair of release layers. By forming a circuit pattern on each of a pair of release layers with a single process, and transferring the circuit pattern into each side of an insulation substrate, the manufacturing process can be shortened and circuit patterns can be formed to a high density.
Abstract:
A mounting substrate and a method of manufacturing the mounting substrate. The mounting substrate can include an insulation layer, a bonding pad buried in one side of the insulation layer in correspondence with a mounting position of a chip, and a circuit pattern electrically connected to the bonding pad. By utilizing certain embodiments of the invention, the process for stacking a solder resist layer can be omitted, as the bonding pads can be implemented in a form recessed from the surface of the insulation layer. In this way, the manufacturing process can be simplified and manufacturing costs can be reduced. Since the surface of the mounting-substrate on which to mount a chip can be kept flat without any protuberances, the occurrence of voids in the underfill can be minimized. This is correlated to obtaining a high degree of reliability, and leads to a greater likelihood of successful mounting.
Abstract:
A printed circuit board, which increases the contact area between an IC and a printed circuit board, thus increasing the degree of adhesion, is disclosed. The printed circuit board includes: an insulation layer which includes a first circuit pattern, including at least one via land, embedded in the upper surface of the insulation layer to be flush with the upper surface, and a second circuit pattern formed in the lower surface of the insulation layer to be flush with the lower surface; a solder resist layer formed on the insulation layer; a via hole and a bump integrally formed on the second circuit pattern through the via hole and the via land such that it protrudes from the insulation layer to be higher than the solder resist layer.
Abstract:
A method of manufacturing a circuit board, which includes a bump pad on which a solder bump may be placed, may include forming a solder pad on a surface of a first carrier; forming a metal film, which covers the solder pad and which extends to a bump pad forming region; forming a circuit layer and a circuit pattern, which are electrically connected with the metal film, on a surface of the first carrier; pressing the first carrier and an insulator such that a surface of the first carrier and the insulator faces each other; and removing the first carrier. Utilizing this method, the amount of solder for the contacting of a flip chip can be adjusted, and solder can be filled inside the board, so that after installing a chip, the overall thickness of the package can be reduced.
Abstract:
A bottom substrate of package on package and manufacturing method thereof is disclosed. A bottom substrate of a package on package electrically connected to a top substrate by means of a solder ball, including a core board, a solder ball pad formed on a surface of the core board in correspondence with a location of the solder ball, an insulation layer laminated on the core board, a through hole formed by removing a part of the insulation layer such that the solder ball pad is exposed, and a metallic layer filled in the through hole and connected electrically with the solder ball, allows the number of ICs mounted on a bottom substrate to be increased without increasing the size of a solder ball, and allows the size and pitch of the solder balls to be made smaller by controlling the thickness of the insulation layer laminated on the bottom substrate, whereby more signal transmission is possible between a top substrate and a bottom substrate.
Abstract:
The present invention relates to a manufacturing method of a package substrate. A manufacturing method of a package substrate for mounting an electric component by connecting electrodes of the electric component to bonding pads, includes: manufacturing a buried pattern substrate having a circuit pattern and bonding pads buried in an insulating layer and having a seed layer laminated on the insulating layer, laminating a dry film onto the seed layer and removing the seed layer and the dry film of the upper side of the bonding pads, performing surface-treatment using the remaining seed layer as a plating lead; and removing the remaining seed layer and the dry film such that the circuit pattern is exposed.
Abstract:
An aspect of the present invention features a manufacturing method of a board on chip package. The method can comprise: (a) laminating a dry film on a carrier film, one side of which is laminated by a thin metal film; (b) patterning the dry film in accordance with a circuit wire through light exposure and developing process, and forming a solder ball pad and a circuit wire; (c) removing the dry film; (d) laminating an upper photo solder resist excluding a portion where the solder ball pad is formed; (e) etching the thin metal film formed on a portion where the upper photo solder resist is not laminated; (f) mounting a semiconductor chip on the solder ball pad by a flip chip bonding; (g) molding the semiconductor chip with a passivation material; (h) removing the carrier film and the thin metal film; and (i) laminating a lower photo solder resist under the solder ball pad. The board on chip package and the manufacturing method thereof according to the present invention can design a high density circuit since a circuit pattern is formed using a seed layer.