Abstract:
Example systems and methods for classifying visual patterns into a plurality of classes are presented. Using reference visual patterns of known classification, at least one image or visual pattern classifier is generated, which is then employed to classify a plurality of candidate visual patterns of unknown classification. The classification scheme employed may be hierarchical or nonhierarchical. The types of visual patterns may be fonts, human faces, or any other type of visual patterns or images subject to classification.
Abstract:
A system and method for distributed similarity learning for high-dimensional image features are described. A set of data features is accessed. Subspaces from a space formed by the set of data features are determined using a set of projection matrices. Each subspace has a dimension lower than a dimension of the set of data features. Similarity functions are computed for the subspaces. Each similarity function is based on the dimension of the corresponding subspace. A linear combination of the similarity functions is performed to determine a similarity function for the set of data features.
Abstract:
An image search method includes receiving a first query, the first query providing a first image constraint. A first search of a plurality of images is performed, responsive to the first query, to identify a first set of images satisfying the first constraint. A first search result, which includes the first set of images identified as satisfying the first constraint, is presented. A second query is received, the second query providing a second image constraint with reference to a first image of the first set of images. A second search of the plurality of images is performed, responsive to the second query, to identify a second set of images that satisfy the second constraint. A second search result, which includes the second set of images identified as satisfying the second constraint, is presented.
Abstract:
One exemplary embodiment involves receiving, at a computing device comprising a processor, a test image having a candidate object and a set of object images detected to depict a similar object as the test image. The embodiment involves localizing the object depicted in each one of the object images based on the candidate object in the test image to determine a location of the object in each respective object image and then generating a validation score for the candidate object in the test image based at least in part on the determined location of the object in the respective object image and known location of the object in the same respective object image. The embodiment also involves computing a final detection score for the candidate object based on the validation score that indicates a confidence level that the object in the test image is located as indicated by the candidate object.
Abstract:
In an example embodiment, for each of the image exemplars, a first location offset between an actual landmark location for a first landmark in the image exemplar and a predicted landmark location for the first landmark in the image exemplar is determined. Then, a probability that the image recognition process applied using the first feature produces an accurate identification of the first landmark in the image exemplars is determined based on the first location offsets for each of the image exemplars. A weight may then be assigned to the first feature based on the derived probability. An image recognition process may then be performed on an image, the image recognition process utilizing a voting process, for each of one or more features, for one or more landmarks in the plurality of image exemplars, the voting process for the first feature weighted according to the weight assigned to the first feature.
Abstract:
Systems and methods are provided for providing patch size adaptation for patch-based image enhancement operations. In one embodiment, an image manipulation application receives an input image. The image manipulation application compares a value for an attribute of at least one input patch of the input image to a threshold value. Based on comparing the value for the to the threshold value, the image manipulation application adjusts a first patch size of the input patch to a second patch size that improves performance of a patch-based image enhancement operation as compared to the first patch size. The image manipulation application performs the patch-based image enhancement operation based on one or more input patches of the input image having the second patch size.
Abstract:
Example systems and methods for classifying visual patterns into a plurality of classes are presented. Using reference visual patterns of known classification, at least one image or visual pattern classifier is generated, which is then employed to classify a plurality of candidate visual patterns of unknown classification. The classification scheme employed may be hierarchical or nonhierarchical. The types of visual patterns may be fonts, human faces, or any other type of visual patterns or images subject to classification.
Abstract:
A hierarchy machine may be configured as a clustering machine that utilizes local feature embedding to organize visual patterns into nodes that each represent one or more visual patterns. These nodes may be arranged as a hierarchy in which a node may have a parent-child relationship with one or more other nodes. The hierarchy machine may implement a node splitting and tree-learning algorithm that includes hard-splitting of nodes and soft-assignment of nodes to perform error-bounded splitting of nodes into clusters. This may enable the hierarchy machine, which may form all or part of a visual pattern recognition system, to perform large-scale visual pattern recognition, such as font recognition or facial recognition, based on a learned error-bounded tree of visual patterns.