摘要:
Realizable interconnect reduction techniques for on-chip RC interconnects are disclosed by first partitioning the original circuit into sets of two-port circuits to maintain the spatial sparsity of the reduced model. Each original two-port circuit is matched to a reduced RC circuit having a specific configuration. The moments of the original two-port circuits are calculated. Closed form expression values of the reduced circuit elements are then calculated from the moments of the original circuits. The closed form expressions for calculating the values of the elements in the reduced circuit use a reduced number of independent variables associated with the elements, thus simplifying the calculations. An efficient linear time moment computation technique is used for computing the moments for the two-port circuits.
摘要:
A method for optimal insertion of buffers into an integrated circuit design. A model representative of a plurality of circuits is created where each circuit has a receiving node coupled to a conductor and a source. A receiving node is selected from the modeled plurality of circuits and circuit noise is calculated for the selected receiving node utilizing the circuit model. If the calculated circuit noise exceeds an acceptable value an optimum distance is computed from the receiving node on the conductor for buffer insertion. In a multi-sink circuit merging of the noise calculation for the two receiving circuits must be accomplished. If an intersection of conductors exists between the receiving node and the optimum distance a set of candidate buffer locations is generated. The method then prunes inferior solutions to provide an optimal insertion of buffers.
摘要:
An efficient method for identifying potential noise failures in an integrated circuit design by predicting peak noise within a victim circuit of an integrated circuit. Initially, a victim circuit within an integrated circuit is located. An aggressor circuit within the integrated circuit is located which has a physical relationship with the victim circuit, normally proximity. The slope of a signal within the aggressor circuit is analyzed and the coupling currents induced in the victim circuit by the aggressor circuit are computed. The input slope of the aggressor circuit and the physical relationship between the victim circuit and the aggressor circuit are utilized to determine a peak current induced into the victim circuit utilizing modelled coupling capacitance. The peak current and the equivalent impedance of the victim circuit can be utilized to determine peak noise. Noise failures on integrated circuits can be avoided by detecting peak noise which is above acceptable levels.