System and Method for Medical Predictive Models Using Likelihood Gamble Pricing
    41.
    发明申请
    System and Method for Medical Predictive Models Using Likelihood Gamble Pricing 有权
    使用似然Gamble定价的医学预测模型的系统和方法

    公开(公告)号:US20080301077A1

    公开(公告)日:2008-12-04

    申请号:US12128947

    申请日:2008-05-29

    IPC分类号: G06N5/04

    摘要: A method for predicting survival rates of medical patients includes providing a set D of survival data for a plurality of medical patients, providing a regression model having an associated parameter vector β, providing an example x0 of a medical patient whose survival probability is to be classified, calculating a parameter vector {circumflex over (β)} that maximizes a log-likelihood function of β over the set of survival data, l(β|D), wherein the log likelihood l(β|D) is a strictly concave function of β and is a function of the scalar xβ, calculating a weight w0 for example x0, calculating an updated parameter vector β* that maximizes a function l(β|D∪{(y0,x0,w0)}), wherein data points (y0,x0,w0) augment set D, calculating a fair log likelihood ratio λƒ from {circumflex over (β)} and β* using λƒ=λ(β*|x0)+sign(λ({circumflex over (β)}|x0)){l({circumflex over (β)}|D)−l(β*|D)}, and mapping the fair log likelihood ratio λƒ to a fair price y0ƒ, wherein said fair price is a probability that class label y0 for example x0 has a value of 1.

    摘要翻译: 一种用于预测医疗患者的存活率的方法包括为多个医疗患者提供生存数据的集合D,提供具有相关联的参数向量β的回归模型,提供其生存概率被分类的医疗患者的示例x0 计算生存数据集合l(β| D)使β的对数似然函数最大化的参数向量{circumflex over(beta)},其中对数似然l(β| D)是严格凹函数 并且是标量xbeta的函数,计算例如x0的权重w0,计算最大化函数l(β|D∪{(y0,x0,w0)})的更新参数向量β*,其中数据点 (y0,x0,w0)增加集合D,使用lambdaf = lambda(beta * | x0)+ sign(lambda({circumflex over(beta))从{circumflex over(beta)}和beta *计算公平对数似然比lambdaf } | x0)){l({circumflex over(beta)} | D)-l(beta * | D)},并映射公平对数似然比 mbdaf以公平价格y0f,其中所述公平价格是类标签y0,例如x0具有值1的概率。

    System and method for a contiguous support vector machine
    43.
    发明申请
    System and method for a contiguous support vector machine 审中-公开
    用于连续支持向量机的系统和方法

    公开(公告)号:US20060104519A1

    公开(公告)日:2006-05-18

    申请号:US11262041

    申请日:2005-10-28

    IPC分类号: G06K9/62 G06K9/46 G06K9/00

    摘要: A method of classifying features in digitized images includes providing a plurality of feature points in an n-dimensional space, wherein said feature points have been extracted from a digitized medical image, formulating a support vector machine to classify said feature point into one of two sets, wherein each said feature classification vector is transformed by an adjacency matrix defined by those points that are nearest neighbors of said feature, and solving said support vector machine by a linear optimization algorithm to determine a classifying plane that separates the feature vectors into said two sets.

    摘要翻译: 对数字化图像中的特征进行分类的方法包括在n维空间中提供多个特征点,其中所述特征点已经从数字化医学图像中提取出来,制定支持向量机以将所述特征点分类成两组中的一组 其中每个所述特征分类矢量被由所述特征的最近邻的那些点定义的相邻矩阵变换,并且通过线性优化算法求解所述支持向量机,以确定将特征向量分成所述两组的分类平面 。

    Systems and methods for automated diagnosis and decision support for breast imaging
    44.
    发明授权
    Systems and methods for automated diagnosis and decision support for breast imaging 有权
    用于乳腺成像自动诊断和决策支持的系统和方法

    公开(公告)号:US07640051B2

    公开(公告)日:2009-12-29

    申请号:US10877129

    申请日:2004-06-25

    IPC分类号: A61B5/00

    摘要: CAD (computer-aided diagnosis) systems and applications for breast imaging are provided, which implement methods to automatically extract and analyze features from a collection of patient information (including image data and/or non-image data) of a subject patient, to provide decision support for various aspects of physician workflow including, for example, automated diagnosis of breast cancer other automated decision support functions that enable decision support for, e.g., screening and staging for breast cancer. The CAD systems implement machine-learning techniques that use a set of training data obtained (learned) from a database of labeled patient cases in one or more relevant clinical domains and/or expert interpretations of such data to enable the CAD systems to “learn” to analyze patient data and make proper diagnostic assessments and decisions for assisting physician workflow.

    摘要翻译: 提供了用于乳腺成像的CAD(计算机辅助诊断)系统和应用,其实现了从受试患者的患者信息(包括图像数据和/或非图像数据)的集合中自动提取和分析特征的方法,以提供 对医生工作流程的各个方面的决策支持,包括例如乳腺癌的自动诊断其他自动化决策支持功能,其能够为乳腺癌的筛选和分期提供决策支持。 CAD系统实施机器学习技术,其使用从一个或多个相关临床领域的标记的患者病例的数据库获得(学习)的一组训练数据和/或对这些数据的专家解释,使得CAD系统能够“学习” 分析患者数据,进行适当的诊断评估和决策,以协助医师的工作流程。

    System and method for a sparse kernel expansion for a Bayes classifier
    45.
    发明授权
    System and method for a sparse kernel expansion for a Bayes classifier 失效
    用于Bayes分类器的稀疏内核扩展的系统和方法

    公开(公告)号:US07386165B2

    公开(公告)日:2008-06-10

    申请号:US11049187

    申请日:2005-02-02

    CPC分类号: G06K9/6256

    摘要: A method and device having instructions for analyzing input data-space by learning classifiers include choosing a candidate subset from a predetermined training data-set that is used to analyze the input data-space. Candidates are temporarily added from the candidate subset to an expansion set to generate a new kernel space for the input data-space by predetermined repeated evaluations of leave-one-out errors for the candidates added to the expansion set. This is followed by removing the candidates temporarily added to the expansion set after the leave-one-out error evaluations are performed, and selecting the candidates to be permanently added to the expansion set based on the leave-one-out errors of the candidates temporarily added to the expansion set to determine the one or more classifiers.

    摘要翻译: 具有用于通过学习分类器分析输入数据空间的指令的方法和设备包括从用于分析输入数据空间的预定训练数据集中选择候选子集。 将候选者从候选子集临时添加到扩展集合,以通过对添加到扩展集合的候选者的一对一错误进行预先重复的评估来为输入数据空间生成新的内核空间。 之后,在执行一次性错误评估之后,删除临时添加到扩展集的候选者,并且基于临时的候选者的一次性错误选择要永久添加到扩展集的候选项 添加到扩展集以确定一个或多个分类器。

    System and method for an iterative technique to determine fisher discriminant using heterogenous kernels
    46.
    发明申请
    System and method for an iterative technique to determine fisher discriminant using heterogenous kernels 审中-公开
    用于使用异质内核确定渔夫判别式的迭代技术的系统和方法

    公开(公告)号:US20050177040A1

    公开(公告)日:2005-08-11

    申请号:US11050599

    申请日:2005-02-03

    IPC分类号: G06K9/62 G06T7/00 A61B5/05

    CPC分类号: G06K9/6234 G06T7/0012

    摘要: A method and device with instructions for analyzing an image data-space includes creating a library of one or more kernels, wherein each kernel from the library of the kernels maps the image data-space to a first data-space using at least one mapping function; and learning a linear combination of kernels in an automatic manner to generate at least one of a classifier and a regressor which is applied to the first data-space. The linear combination of kernels is used to generate a classified image-data space to detect at least one of the candidates in the classified image-data space.

    摘要翻译: 一种具有用于分析图像数据空间的指令的方法和装置包括创建一个或多个内核的库,其中来自该库的库中的每个内核使用至少一个映射函数将图像数据空间映射到第一数据空间 ; 以及以自动方式学习内核的线性组合,以生成应用于所述第一数据空间的分类器和回归器中的至少一个。 使用内核的线性组合来生成分类图像数据空间,以检测分类图像数据空间中的候选者中的至少一个。

    Systems and methods for automated diagnosis and decision support for breast imaging
    47.
    发明申请
    Systems and methods for automated diagnosis and decision support for breast imaging 有权
    用于乳腺成像自动诊断和决策支持的系统和方法

    公开(公告)号:US20050049497A1

    公开(公告)日:2005-03-03

    申请号:US10877129

    申请日:2004-06-25

    IPC分类号: A61B8/00 G06F19/00 G06T7/00

    摘要: CAD (computer-aided diagnosis) systems and applications for breast imaging are provided, which implement methods to automatically extract and analyze features from a collection of patient information (including image data and/or non-image data) of a subject patient, to provide decision support for various aspects of physician workflow including, for example, automated diagnosis of breast cancer other automated decision support functions that enable decision support for, e.g., screening and staging for breast cancer. The CAD systems implement machine-learning techniques that use a set of training data obtained (learned) from a database of labeled patient cases in one or more relevant clinical domains and/or expert interpretations of such data to enable the CAD systems to “learn” to analyze patient data and make proper diagnostic assessments and decisions for assisting physician workflow.

    摘要翻译: 提供了用于乳腺成像的CAD(计算机辅助诊断)系统和应用,其实现了从受试患者的患者信息(包括图像数据和/或非图像数据)的集合中自动提取和分析特征的方法,以提供 对医生工作流程的各个方面的决策支持,包括例如乳腺癌的自动诊断其他自动化决策支持功能,其能够为乳腺癌的筛选和分期提供决策支持。 CAD系统实施机器学习技术,其使用从一个或多个相关临床领域的标记的患者病例的数据库获得(学习)的一组训练数据和/或对这些数据的专家解释,使得CAD系统能够“学习” 分析患者数据,进行适当的诊断评估和决策,以协助医师的工作流程。