摘要:
A method and system for minimizing attitude errors resulting from dynamic spacecraft maneuvers or time-varying mismatched attitude sensor measurements. The method includes time-tagging a primary attitude value from a primary attitude sensor and storing the value and associated time stamp in a buffer. A secondary attitude value, generated by a secondary attitude sensor, having a different associated time-stamp is then time-matched to the primary attitude valve. The corrected spacecraft attitude is then calculated as a function of the time-matched primary and secondary attitude values. In one aspect of the invention, the primary attitude sensor generates attitude data at a faster rate than the secondary attitude sensor. This primary attitude data is stored in a buffer such that, when the secondary attitude data becomes available, several nearest-in-time primary attitude data points are retrieved from the buffer. These data points are then used to interpolate a higher time-matched resolution data point. This, in turn, is used along with the secondary attitude data point in updating the spacecraft attitude.
摘要:
A method and apparatus for autonomous acquisition of attitude in a stellar inertial spacecraft attitude system is disclosed. The present invention uses star trackers, an on-board star catalog, spacecraft steering and inertial sensors to determine spacecraft attitude. The present invention utilizes pattern match and pattern rejection methods and uses multiple stellar snap-shots in conjunction with spacecraft steering and spacecraft inertial measurements to acquire spacecraft attitude. Spacecraft inertial measurements are used to connect multiple stellar snap-shots to provide adequate star information that can be used to acquire spacecraft attitude. In an attitude determination system using star trackers, the star trackers may have a narrow field-of-view or few stars may be available for viewing. The present invention uses pattern matching and pattern rejection on different sets of stars, thereby allowing attitude acquisition when the number of stars in view is small.
摘要:
A method of controlling attitude of a spacecraft during a transfer orbit operation is provided. The method includes providing a slow spin rate, determining the attitude of the spacecraft using a unified sensor set, and controlling the attitude of the spacecraft using a unified control law. The use of a unified set of sensors and a unified control law reduces spacecraft complexity, cost, and weight.
摘要:
A method of controlling attitude of a spacecraft during a transfer orbit operation is provided. The method includes providing a slow spin rate, determining the attitude of the spacecraft using a unified sensor set, and controlling the attitude of the spacecraft using a unified control law. The use of a unified set of sensors and a unified control law reduces spacecraft complexity, cost, and weight.
摘要:
A method of calibrating a gyro (42) of a spacecraft (14) may include determining a yaw attitude residual of the spacecraft. Roll gyro bias residual is determined in response to the yaw attitude residual. The gyro (42) is calibrated in response to the roll gyro bias residual. A method of calibrating a gyro (42) of a spacecraft (14) may alternatively include disabling gyro calibration, gain scheduling, or resetting attitude and gyro bias covariance, for selective axes, for a yaw transient period. The gyro (42) is calibrated in a nominal fashion after completion of the yaw transient period.
摘要:
A method and apparatus for refining a spacecraft state estimate, such as an attitude estimate or an angular velocity estimate, is disclosed. The method computes a plurality equations using residuals describing the difference between observed star positions and predicted positions based on inertial measurements, and solves those equations to generate refined estimates of the spacecraft state estimates.
摘要:
A method, apparatus, and article of manufacture for directing a payload coupled to a spacecraft substantially at a target location is disclosed. The method comprises the steps of determining spacecraft orbital parameters and spacecraft payload attitude parameters; and directing the payload at the target location by applying a spacecraft bus steering law determined at least in part from the orbit and attitude parameters. The apparatus comprises a navigation system for determining spacecraft orbit parameters and spacecraft attitude parameters, and for applying a spacecraft bus steering law to direct the payload substantially at the target location. The spacecraft bus steering law is determined at least in part from the determined spacecraft orbital parameters, the determined spacecraft attitude, and determined payload attitude parameters. In one embodiment, the apparatus includes a payload attitude control system for directing the payload relative to the spacecraft bus. The article of manufacture comprises a program storage device tangibly embodying a series of instruction for performing the above method steps.
摘要:
The stability of a recursive estimator process (e.g., a Kalman filter is assured for long time periods by periodically resetting an error covariance P(tn) of the system to a predetermined reset value Pr. The recursive process is thus repetitively forced to start from a selected covariance and continue for a time period that is short compared to the system's total operational time period. The time period in which the process must maintain its numerical stability is significantly reduced as is the demand on the system's numerical stability. The process stability for an extended operational time period To is verified by performing the resetting step at the end of at least one reset time period Tr whose duration is less than the operational time period To and then confirming stability of the process over the reset time period Tr. Because the recursive process starts from a selected covariance at the beginning of each reset time period Tr, confirming stability of the process over at least one reset time period substantially confirms stability over the longer operational time period To.
摘要:
A multi-constellation GNSS augmentation and assistance system may include a plurality of reference stations. Each reference station may be adapted to receive navigation data from a plurality of different global navigation satellite systems and to monitor integrity and performance data for each different global navigation satellite system. An operation center may receive the integrity and performance data transmitted from each of the plurality of reference stations. A communication network may transmit a message from the operation center to navcom equipment of a user for augmentation and assistance of the navcom equipment.
摘要:
A method of controlling attitude of a spacecraft during a transfer orbit operation is provided. The method includes providing a slow spin rate, determining the attitude of the spacecraft using a unified sensor set, and controlling the attitude of the spacecraft using a unified control law. The use of a unified set of sensors and a unified control law reduces spacecraft complexity, cost, and weight.