-
公开(公告)号:US20210357731A1
公开(公告)日:2021-11-18
申请号:US17287306
申请日:2019-11-18
Applicant: DeepMind Technologies Limited
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a neural network system used to control an agent interacting with an environment. One of the methods includes receiving a current observation; processing the current observation using a proposal neural network to generate a proposal output that defines a proposal probability distribution over a set of possible actions that can be performed by the agent to interact with the environment; sampling (i) one or more actions from the set of possible actions in accordance with the proposal probability distribution and (ii) one or more actions randomly from the set of possible actions; processing the current observation and each sampled action using a Q neural network to generate a Q value; and selecting an action using the Q values generated by the Q neural network.
-
公开(公告)号:US20210166127A1
公开(公告)日:2021-06-03
申请号:US17170316
申请日:2021-02-08
Applicant: DeepMind Technologies Limited
Inventor: Volodymyr Mnih , Adrià Puigdomènech Badia , Alexander Benjamin Graves , Timothy James Alexander Harley , David Silver , Koray Kavukcuoglu
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for asynchronous deep reinforcement learning. One of the systems includes a plurality of workers, wherein each worker is configured to operate independently of each other worker, and wherein each worker is associated with a respective actor that interacts with a respective replica of the environment during the training of the deep neural network.
-
43.
公开(公告)号:US20210034970A1
公开(公告)日:2021-02-04
申请号:US16767049
申请日:2019-02-05
Applicant: DeepMind Technologies Limited
Inventor: Hubert Josef Soyer , Lasse Espeholt , Karen Simonyan , Yotam Doron , Vlad Firoiu , Volodymyr Mnih , Koray Kavukcuoglu , Remi Munos , Thomas Ward , Timothy James Alexander Harley , Iain Robert Dunning
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an action selection neural network used to select actions to be performed by an agent interacting with an environment. In one aspect, a system comprises a plurality of actor computing units and a plurality of learner computing units. The actor computing units generate experience tuple trajectories that are used by the learner computing units to update learner action selection neural network parameters using a reinforcement learning technique. The reinforcement learning technique may be an off-policy actor critic reinforcement learning technique.
-
-