-
公开(公告)号:US20240127058A1
公开(公告)日:2024-04-18
申请号:US18471404
申请日:2023-09-21
Applicant: Google LLC
Inventor: Mohammad Norouzi , Daniel Aaron Abolafia , Quoc V. Le
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a neural network using a priority queue. One of the methods includes maintaining data identifying a set of K output sequences that were previously generated; selecting at least one of the output sequences from the set of output sequences; for each selected output sequence, determining a respective score; determining, for each selected sequence, a respective first update to the current values of the controller parameters; generating a batch of new output sequences using the controller neural network; obtaining a respective reward for each of the new output sequences; determining, from the new output sequences and the output sequences in the maintained data, the K output sequences that have the highest rewards; and modifying the maintained data.
-
公开(公告)号:US11960519B2
公开(公告)日:2024-04-16
申请号:US16998891
申请日:2020-08-20
Applicant: Google LLC
Inventor: Gregory Sean Corrado , Tomas Mikolov , Samy Bengio , Yoram Singer , Jonathon Shlens , Andrea L Frome , Jeffrey Adgate Dean , Mohammad Norouzi
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for classifying data objects. One of the methods includes obtaining data that associates each term in a vocabulary of terms with a respective high-dimensional representation of the term; obtaining classification data for a data object, wherein the classification data includes a respective score for each of a plurality of categories, and wherein each of the categories is associated with a respective category label; computing an aggregate high-dimensional representation for the data object from high-dimensional representations for the category labels associated with the categories and the respective scores; identifying a first term in the vocabulary of terms having a high-dimensional representation that is closest to the aggregate high-dimensional representation; and selecting the first term as a category label for the data object.
-
公开(公告)号:US20230385990A1
公开(公告)日:2023-11-30
申请号:US18227120
申请日:2023-07-27
Applicant: Google LLC
Inventor: Chitwan Saharia , Jonathan Ho , William Chan , Tim Salimans , David Fleet , Mohammad Norouzi
CPC classification number: G06T5/002 , G06T5/50 , G06T3/4007 , G06N3/08 , G06N3/045 , G06T2207/20081 , G06T2207/20016 , G06T2207/20084
Abstract: A method includes receiving, by a computing device, training data comprising a plurality of pairs of images, wherein each pair comprises an image and at least one corresponding target version of the image. The method also includes training a neural network based on the training data to predict an enhanced version of an input image, wherein the training of the neural network comprises applying a forward Gaussian diffusion process that adds Gaussian noise to the at least one corresponding target version of each of the plurality of pairs of images to enable iterative denoising of the input image, wherein the iterative denoising is based on a reverse Markov chain associated with the forward Gaussian diffusion process. The method additionally includes outputting the trained neural network.
-
公开(公告)号:US11769228B2
公开(公告)日:2023-09-26
申请号:US17391150
申请日:2021-08-02
Applicant: Google LLC
Inventor: Chitwan Saharia , Jonathan Ho , William Chan , Tim Salimans , David Fleet , Mohammad Norouzi
CPC classification number: G06T5/002 , G06N3/045 , G06N3/08 , G06T3/4007 , G06T5/50 , G06T2207/20016 , G06T2207/20081 , G06T2207/20084
Abstract: A method includes receiving, by a computing device, training data comprising a plurality of pairs of images, wherein each pair comprises an image and at least one corresponding target version of the image. The method also includes training a neural network based on the training data to predict an enhanced version of an input image, wherein the training of the neural network comprises applying a forward Gaussian diffusion process that adds Gaussian noise to the at least one corresponding target version of each of the plurality of pairs of images to enable iterative denoising of the input image, wherein the iterative denoising is based on a reverse Markov chain associated with the forward Gaussian diffusion process. The method additionally includes outputting the trained neural network.
-
公开(公告)号:US11756166B2
公开(公告)日:2023-09-12
申请号:US18155420
申请日:2023-01-17
Applicant: Google LLC
Inventor: Chitwan Saharia , Jonathan Ho , William Chan , Tim Salimans , David Fleet , Mohammad Norouzi
CPC classification number: G06T5/002 , G06N3/045 , G06N3/08 , G06T3/4007 , G06T5/50 , G06T2207/20016 , G06T2207/20081 , G06T2207/20084
Abstract: A method includes receiving, by a computing device, training data comprising a plurality of pairs of images, wherein each pair comprises an image and at least one corresponding target version of the image. The method also includes training a neural network based on the training data to predict an enhanced version of an input image, wherein the training of the neural network comprises applying a forward Gaussian diffusion process that adds Gaussian noise to the at least one corresponding target version of each of the plurality of pairs of images to enable iterative denoising of the input image, wherein the iterative denoising is based on a reverse Markov chain associated with the forward Gaussian diffusion process. The method additionally includes outputting the trained neural network.
-
公开(公告)号:US20230067841A1
公开(公告)日:2023-03-02
申请号:US17391150
申请日:2021-08-02
Applicant: Google LLC
Inventor: Chitwan Saharia , Jonathan Ho , William Chan , Tim Salimans , David Fleet , Mohammad Norouzi
Abstract: A method includes receiving, by a computing device, training data comprising a plurality of pairs of images, wherein each pair comprises an image and at least one corresponding target version of the image. The method also includes training a neural network based on the training data to predict an enhanced version of an input image, wherein the training of the neural network comprises applying a forward Gaussian diffusion process that adds Gaussian noise to the at least one corresponding target version of each of the plurality of pairs of images to enable iterative denoising of the input image, wherein the iterative denoising is based on a reverse Markov chain associated with the forward Gaussian diffusion process. The method additionally includes outputting the trained neural network.
-
公开(公告)号:US20210327029A1
公开(公告)日:2021-10-21
申请号:US16847163
申请日:2020-04-13
Applicant: Google LLC
Inventor: Ting Chen , Simon Kornblith , Mohammad Norouzi , Geoffrey Everest Hinton
Abstract: Provided are systems and methods for contrastive learning of visual representations. In particular, the present disclosure provides systems and methods that leverage particular data augmentation schemes and a learnable nonlinear transformation between the representation and the contrastive loss to provide improved visual representations. In contrast to certain existing techniques, the contrastive self-supervised learning algorithms described herein do not require specialized architectures or a memory bank. Some example implementations of the proposed approaches can be referred to as a simple framework for contrastive learning of representations or “SimCLR.” Further example aspects are described below and provide the following benefits and insights.
-
公开(公告)号:US20210319266A1
公开(公告)日:2021-10-14
申请号:US17018372
申请日:2020-09-11
Applicant: Google LLC
Inventor: Ting Chen , Simon Kornblith , Mohammad Norouzi , Geoffrey Everest Hinton
Abstract: Systems, methods, and computer program products for performing semi-supervised contrastive learning of visual representations are provided. For example, the present disclosure provides systems and methods that leverage particular data augmentation schemes and a learnable nonlinear transformation between the representation and the contrastive loss to provide improved visual representations. Further, the present disclosure also provides improvements for semi-supervised contrastive learning. For example, computer-implemented method may include performing semi-supervised contrastive learning based on a set of one or more unlabeled training data, generating an image classification model based on a portion of a plurality of layers in a projection head neural network used in performing the contrastive learning, performing fine-tuning of the image classification model based on a set of one or more labeled training data, and after performing the fine-tuning, distilling the image classification model to a student model comprising a relatively smaller number of parameters than the image classification model.
-
公开(公告)号:US20200320372A1
公开(公告)日:2020-10-08
申请号:US16904785
申请日:2020-06-18
Applicant: Google LLC
Inventor: Ofir Nachum , Mohammad Norouzi , Dale Eric Schuurmans , Kelvin Xu
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a policy neural network used to select actions to be performed by a reinforcement learning agent interacting with an environment. In one aspect, a method includes obtaining path data defining a path through the environment traversed by the agent. A consistency error is determined for the path from a combined reward, first and last soft-max state values, and a path likelihood. A value update for the current values of the policy neural network parameters is determined from at least the consistency error. The value update is used to adjust the current values of the policy neural network parameters.
-
公开(公告)号:US20200279163A1
公开(公告)日:2020-09-03
申请号:US16878720
申请日:2020-05-20
Applicant: Google LLC
Inventor: Samuel Bengio , Mohammad Norouzi , Benoit Steiner , Jeffrey Adgate Dean , Hieu Hy Pham , Azalia Mirhoseini , Quoc V. Le , Naveen Kumar , Yuefeng Zhou , Rasmus Munk Larsen
Abstract: A method for determining a placement for machine learning model operations across multiple hardware devices is described. The method includes receiving data specifying a machine learning model to be placed for distributed processing on multiple hardware devices; generating, from the data, a sequence of operation embeddings, each operation embedding in the sequence characterizing respective operations necessary to perform the processing of the machine learning model; processing the sequence of operation embeddings using a placement recurrent neural network in accordance with first values of a plurality network parameters of the placement recurrent neural network to generate a network output that defines a placement of the operations characterized by the operation embeddings in the sequence across the plurality of devices; and scheduling the machine learning model for processing by the multiple hardware devices by placing the operations on the multiple devices according to the placement defined by the network output.
-
-
-
-
-
-
-
-
-