Abstract:
A pixel structure for a display device is provided. The pixel structure utilizes light entering from the ambient environment of the display as a light source. The pixel structure comprises a first substrate, a light obstructing layer, an active element and an adjustable light shielding layer. The light obstructing layer is disposed on the first substrate and has a transparent area and an opaque area. The active element is disposed on the opaque area of the light obstructing layer and has a first state and a second state. The adjustable light shielding layer is disposed on the light obstructing layer and the active element. When the active element is in the first state, the adjustable light shielding layer is adapted to cover the transparent area to shield the light from emitting out from the first substrate. When the active element is in the second state, the adjustable light shielding layer is driven to uncover the transparent area so that the light is adapted to emit out from the transparent area and the first substrate.
Abstract:
A sensing structure and a displayer comprising the same are provided. The displayer further comprises a substrate and a panel disposed opposite to the substrate. The sensing structure comprises a plurality of sensing elements, a conductive assembly, and a process module. Each of the sensing elements has a position data corresponding to the panel. Every several adjacent ones of the sensing elements form a plurality of sensing areas. The process module is electrically connected to the sensing elements via the conductive assembly. Each of the sensing elements generates a touch voltage in response to a touch on the sensing areas. The process module receives the touch voltages, and calculates a touch position of the one touch corresponding to the panel according to the position data and the touch voltages.
Abstract:
A method for fabricating flexible display device includes the following steps. Firstly, a rigid substrate is provided. Secondly, a sacrificing layer is formed on the rigid substrate. Thirdly, an element layer is formed on the sacrificing layer. Fourthly, the sacrificing layer is etched by a gas and then gasified, so that the element layer is separated from the rigid substrate. Then, the element layer is adhered to a flexible substrate. Because products generated by the sacrificing layer reacting with the gas are gases, the products can be removed by air exhaust for simplifying process. Thus, the cost of the process of fabricating flexible display device can be decreased.
Abstract:
A sensing structure and a displayer comprising the same are provided. The displayer further comprises a substrate and a panel disposed opposite to the substrate. The sensing structure comprises a plurality of sensing elements, a conductive assembly, and a process module. Each of the sensing elements has a position data corresponding to the panel. Every several adjacent ones of the sensing elements form a plurality of sensing areas. The process module is electrically connected to the sensing elements via the conductive assembly. Each of the sensing elements generates a touch voltage in response to a touch on the sensing areas. The process module receives the touch voltages, and calculates a touch position of the one touch corresponding to the panel according to the position data and the touch voltages.
Abstract:
A method for fabricating flexible display device includes the following steps. Firstly, a rigid substrate is provided. Secondly, a sacrificing layer is formed on the rigid substrate. Thirdly, an element layer is formed on the sacrificing layer. Fourthly, the sacrificing layer is etched by a gas and then gasified, so that the element layer is separated from the rigid substrate. Then, the element layer is adhered to a flexible substrate. Because products generated by the sacrificing layer reacting with the gas are gases, the products can be removed by air exhaust for simplifying process. Thus, the cost of the process of fabricating flexible display device can be decreased.
Abstract:
A sensing structure and a displayer comprising the same are provided. The displayer further comprises a substrate and a panel disposed opposite to the substrate. The sensing structure comprises a plurality of sensing elements, a conductive assembly, and a process module. Each of the sensing elements has a position data corresponding to the panel. Every several adjacent ones of the sensing elements form a plurality of sensing areas. The process module is electrically connected to the sensing elements via the conductive assembly. Each of the sensing elements generates a touch voltage in response to a touch on the sensing areas. The process module receives the touch voltages, and calculates a touch position of the one touch corresponding to the panel according to the position data and the touch voltages.
Abstract:
A method for manufacturing a color electrophoretic display device includes the following steps. First, a substrate having a displaying region and a circuit region around the displaying region is provided. Next, a driving array is formed in the displaying region. Subsequently, an electrophoretic display layer is formed on the driving array. Afterwards, a thermal transfer process is performed so that a color filter layer is formed on the electrophoretic display layer. The method can increase the production eligibility rate of the color electrophoretic display device, thereby improving the display quality of the color electrophoretic display device.
Abstract:
A touch panel, operated by a magnetic stylus, including: a display panel, having a display plane and an interface plane, the interface plane underlying the display plane; and a sensing assembly, underlying the display panel, having a first conductive layer, a second conductive layer, and a plurality of insulating spacers, the first conductive layer underlying the interface plane, and the insulating spacers being placed between the first conductive layer and the second conductive layer to divide the first conductive layer and the second conductive layer into a plurality of first conductive segments and a plurality of second conductive segments respectively, wherein one of the second conductive segments will be bent upward by a magnetic force to electrically connect with one of the first conductive segments when the magnetic stylus is applied thereto.
Abstract:
A flat display apparatus comprises a first display screen and a second display screen. The first display screen is a particle-based display screen, and the second display screen is a liquid-based display screen.
Abstract:
A violin display, installed on a violin, including: a control device, used to output a fingering lines pattern data; and a fingerboard display, installed on the fingerboard of the violin to display an image corresponding to the fingering lines pattern data.