摘要:
A first lens group (G1) fixed with respect to the image plane includes a lens (11) having a negative refractive power, a lens (12) having a positive refractive power and a lens (13) having a positive refractive power. A second lens group (G2) has a negative refractive power as a whole, and causes a zooming action when moved along the optical axis. An aperture stop is fixed with respect to the image plane. A third lens group (G3) includes a lens (31) having a negative refractive power and a lens (32) having a positive refractive power, has a positive or negative refractive power as a whole, and is fixed with respect to the direction of the optical axis when zooming and when focusing. A fourth lens group (G4) has a positive refractive power as a whole, and moves along the optical axis such that the image plane, which is displaced by a movement of the second lens group (G2) along the optical axis and by a movement of the object, is maintained at a constant position with respect to a reference plane. Thus, it is possible to realize a compact and high-image quality small zoom lens that is suitable for three-CCDs.
摘要:
A zoom lens, having a camera shake correction function, that is capable of preventing degradation of chromatic aberration while correcting camera shake, and can be small, light-weight and power-saving, is provided. The zoom lens is composed of four groups of lenses having positive, negative, positive and positive refractive powers, arranged in that order from an object side to an image plane side, where a second lens group conducts zooming and a fourth lens group conducts focus adjustment. The second lens group is made of a concave meniscus lens, a concave lens, a double convex lens, and a concave lens, arranged in that order from the object side to the image plane side, and it includes also at least one aspheric surface. A third lens group includes a cemented lens having a cemented surface whose convex surface faces the object side, and can be shifted in a perpendicular direction with respect to an optical axis in order to correct image fluctuations during a camera shake.
摘要:
A zoom lens, having a camera shake correction function, that is capable of preventing degradation of chromatic aberration while correcting camera shake, and can be small, light-weight and power-saving, is provided. The zoom lens is composed of four groups of lenses having positive, negative, positive and positive refractive powers, arranged in that order from an object side to an image plane side, where a second lens group conducts zooming and a fourth lens group conducts focus adjustment. The second lens group is made of a concave meniscus lens, a concave lens, a double convex lens, and a concave lens, arranged in that order from the object side to the image plane side, and it includes also at least one aspheric surface. A third lens group includes a cemented lens having a cemented surface whose convex surface faces the object side, and can be shifted in a perpendicular direction with respect to an optical axis in order to correct image fluctuations during a camera shake.
摘要:
A zoom lens system according to the present invention, from an object side, comprises a first lens unit having positive optical power, a second lens unit having negative optical power, a third lens unit having positive optical power, and a fourth lens unit having positive optical power. In zooming, the first to the fourth units all move along the optical axis. The third lens unit is composed of three or more lens elements. The condition (6): nd8≦1.5 and vd8≧75 and the condition (7): (nd9−1)+(nd10−1)≧1.55 are satisfied (where, 16 35, and in the third lens unit: nd8, nd9, nd10 are refractive indices to the d-line of the lens elements located on the most object side and at the second and the third positions from the object side; vd8 is an Abbe number to the d-line of the lens element on the most object side; ω is a half view angle at a wide-angle limit; fT is a focal length of the entire system at a telephoto limit; and fW is a focal length of the entire system at a wide-angle limit). As a result, the zoom lens system has a reduced size and still realizes a wide view angle at a wide-angle limit, as well as a remarkably high zooming ratio and high performance.
摘要:
A zoom lens system according to the present invention, from an object side to an image side, comprises a first lens unit having positive optical power, a second lens unit having negative optical power, a third lens unit having positive optical power, and a fourth lens unit having positive optical power. In zooming, the first to the fourth lens units all move along the optical axis. The conditions (1): 0 35; ω is a half view angle at a wide-angle limit; LW is an overall optical axial length of the entire system at a wide-angle limit; f3 is a focal length of the third lens unit; f4 is a focal length of the fourth lens unit; fT is a focal length of the entire system at a telephoto limit; and fW is a focal length of the entire system at a wide-angle limit). As a result, the zoom lens system has a reduced size and still realizes a wide view angle at a wide-angle limit, as well as a remarkably high zooming ratio and high performance.
摘要:
A zoom lens system is provided that includes a compactly constructed focusing lens unit and that has a suppressed change in the image magnification at the time of movement of a focusing lens unit. The zoom lens system according to the present invention comprises: a positive lens unit that is arranged on an object side relative to the aperture diaphragm; a negative lens unit that is arranged on an image side relative to the positive lens unit and on an object side relative to the aperture diaphragm; and a focusing lens unit that is arranged in an optical path between the negative lens unit and the aperture diaphragm. The zoom lens system satisfies the condition (4): 1.20 3.0, βNT(βNW): a composite focal length of the focusing lens unit and the negative lens unit in an infinity in-focus condition at a telephoto (wide-angle) limit when the focusing lens unit has negative optical power, or a lateral magnification of the negative lens unit at a telephoto limit in an infinity in-focus condition when the focusing lens unit has positive optical power, fT: a focal length of the entire system at a telephoto limit, fW: a focal length of the entire system at a wide-angle limit.
摘要:
A zoom lens system according to the present invention, from an object side to an image side, comprises a first lens unit having positive optical power, a second lens unit having negative optical power, a third lens unit having positive optical power, and a fourth lens unit having positive optical power. In zooming, the first to the fourth lens units all move along the optical axis. The conditions (1): 0 35; ω is a half view angle at a wide-angle limit; LW is an overall optical axial length of the entire system at a wide-angle limit; f3 is a focal length of the third lens unit; f4 is a focal length of the fourth lens unit; fT T is a focal length of the entire system at a telephoto limit; and fW is a focal length of the entire system at a wide-angle limit). As a result, the zoom lens system has a reduced size and still realizes a wide view angle at a wide-angle limit, as well as a remarkably high zooming ratio and high performance.
摘要:
A zoom lens system according to the present invention, from an object side, comprises a first lens unit having positive optical power, a second lens unit having negative optical power, a third lens unit having positive optical power, and a fourth lens unit having positive optical power. In zooming, the first to the fourth units all move along the optical axis. The third lens unit is composed of three or more lens elements. The condition (6): nd8≦1.5 and vd8≧75 and the condition (7): (nd9−1)+(nd10−1)≧1.55 are satisfied (where, 16 35, and in the third lens unit: nd8, nd9, nd10 are refractive indices to the d-line of the lens elements located on the most object side and at the second and the third positions from the object side; vd8 is an Abbe number to the d-line of the lens element on the most object side; ω is a half view angle at a wide-angle limit; fT is a focal length of the entire system at a telephoto limit; and fW is a focal length of the entire system at a wide-angle limit). As a result, the zoom lens system has a reduced size and still realizes a wide view angle at a wide-angle limit, as well as a remarkably high zooming ratio and high performance.
摘要:
A zoom lens system according to the present invention, from an object side to an image side, comprises a first lens unit having positive optical power, a second lens unit having negative optical power, a third lens unit having positive optical power, and a fourth lens unit having positive optical power. In zooming, the first to the fourth lens units all move along the optical axis. The condition (8): 0.15 35; dG3 is an optical axial center thickness of the third lens unit; dG is a sum of the optical axial thicknesses of the first to the fourth lens units; ω is a half view angle at a wide-angle limit; fT is a focal length of the entire system at a telephoto limit; and fW is a focal length of the entire system at a wide-angle limit). As a result, the zoom lens system has a reduced size and still realizes a wide view angle at a wide-angle limit, as well as a remarkably high zooming ratio and high performance.
摘要:
A zoom lens system is provided that includes a compactly constructed focusing lens unit and that has a suppressed change in the image magnification at the time of movement of a focusing lens unit. The zoom lens system, in order from an object side to an image side, comprises at least: a first lens unit having positive optical power; a second lens unit having negative optical power; a third lens unit having negative optical power; and an aperture diaphragm. At the time of zooming, the zoom lens system moves the first to third lens units so that intervals between these lens units vary. At the time of focusing from an infinity in-focus condition to a close-point object in-focus condition, the zoom lens system moves the third lens unit to the object side.