Abstract:
An optical lens assembly includes, in order from an object side to an image side, a first lens element, a second lens element and a third lens element. The first lens element with positive refractive power has an object-side surface being convex, and the object-side surface and an image-side surface thereof are aspheric. The second lens element with negative refractive power has an image-side surface being concave, and an object-side surface and the image-side surface thereof are aspheric. The third lens element with refractive power has an object-side surface being concave, and the object-side surface and an image-side surface thereof are aspheric. The optical lens assembly further includes a stop with no lens element having refractive power disposed between the stop and the first lens element. The optical lens assembly has a total of three lens elements with refractive power.
Abstract:
A photographing optical lens assembly comprises, in order from an object side to an image side: a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element with refractive power has a concave object-side surface in a paraxial region. The second lens element has refractive power. The third lens element has refractive power. The fourth lens element with negative refractive power has an object-side and an image-side surfaces both being aspheric. The fifth lens element with refractive power has an aspheric object-side surface and an aspheric image-side surface being concave in a paraxial region with at least one inflection point. The photographing optical lens assembly has a total of five lens elements with refractive power.
Abstract:
An optical imaging system includes, in order from an object side to an image side, a first lens element with positive refractive power, a second lens element, a third lens element, a fourth lens element, and a fifth lens element. Each of the fourth lens element and the fifth lens element includes at least one aspheric surface. The fourth lens element and the fifth lens element are made of plastic. The fifth lens element includes a concave image-side surface and at least one inflection point. An axial distance is formed between each of the first lens element, the second lens element, the third lens element, the fourth lens element, and the fifth lens element, and the optical imaging system further comprises a stop.
Abstract:
An image capturing array system includes, in order from an object side to an image side, at least two image lens units and at least one image sensor disposed on an image plane of each of the image lens units. Each of the image lens units includes at least one lens element with refractive power, an object-side surface and an image-side surface of the lens element are aspheric, and an object is relatively stationary with respect to the in lens units during an image capturing process.
Abstract:
An optical imaging lens assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element has positive refractive power. The second lens element has positive refractive power. The third lens element has positive refractive power. The fourth lens element with positive refractive power has a convex image-side surface. The fifth lens element with refractive power has a concave image-side surface in a paraxial region thereof, wherein the image-side surface of the fifth lens element has at least one convex shape in an off-axis region thereof, and the surfaces thereof are aspheric. The optical imaging lens assembly has a total of five lens elements with refractive power.
Abstract:
An imaging lens assembly includes five lens elements with refractive power, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element with positive refractive power has a convex object-side surface. The second lens element has positive refractive power. The third lens element has refractive power. The fourth lens element with refractive power has a concave image-side surface, wherein both of an object-side surface and the image-side surface of the fourth lens element are aspheric. The fifth lens element with refractive power has a concave image-side surface, wherein at least one inflection point is formed on the image-side surface of the fifth lens element, and both of an object-side surface and the image-side surface of the fifth lens element are aspheric.
Abstract:
An optical photographing system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, and a sixth lens element. The first lens element with positive refractive power has an object-side surface being convex at a paraxial region thereof. The second lens element with negative refractive power has an object-side surface being concave at a paraxial region thereof. The third lens element has refractive power. The fourth lens element has refractive power. The fifth lens element with positive refractive power has an image-side surface being convex at a paraxial region thereof, and the surfaces thereof are aspheric. The sixth lens element with refractive power has an image-side surface changing from concave at a paraxial region thereof to convex at a peripheral region thereof, and the surfaces thereof are aspheric.
Abstract:
A monofocal photographing lens assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element and a sixth lens element. The first lens element with negative refractive power has a concave image-side surface. The second lens element has refractive power. The third lens element has refractive power. The fourth lens element has refractive power. The fifth lens element has negative refractive power. The sixth lens element with positive refractive power has a convex image-side surface.
Abstract:
An optical lens assembly includes five lens elements, the five lens elements are, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. Each of the five lens elements has an object-side surface towards the object side and an image-side surface towards the image side. The fourth lens element with positive refractive power has the object-side surface being convex in a paraxial region thereof. The fifth lens element with negative refractive power has the object-side surface being concave in a paraxial region thereof and the image-side surface being concave in a paraxial region thereof.
Abstract:
An optical image lens assembly includes nine lens elements which are, in order from an object side to an image side along an optical path: a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element, a seventh lens element, an eighth lens element and a ninth lens element. Each of the nine lens elements has an object-side surface facing toward the object side and an image-side surface facing toward the image side. The first lens element has positive refractive power. The second lens element has negative refractive power. The image-side surface of the ninth lens element is concave in a paraxial region thereof and has at least one inflection point.