摘要:
A method of generating a natural language model for use in a spoken dialog system is disclosed. The method comprises using sample utterances and creating a number of hand crafted rules for each call-type defined in a labeling guide. A first NLU model is generated and tested using the hand crafted rules and sample utterances. A second NLU model is built using the sample utterances as new training data and using the hand crafted rules. The second NLU model is tested for performance using a first batch of labeled data. A series of NLU models are built by adding a previous batch of labeled data to training data and using a new batch of labeling data as test data to generate the series of NLU models with training data that increases constantly. If not all the labeling data is received, the method comprises repeating the step of building a series of NLU models until all labeling data is received. After all the training data is received, at least once, the method comprises building a third NLU model using all the labeling data, wherein the third NLU model is used in generating the spoken dialog service.
摘要:
Recognizing a stream of speech received as speech vectors over a lossy communications link includes constructing for a speech recognizer a series of speech vectors from packets received over a lossy packetized transmission link, wherein some of the packets associated with each speech vector are lost or corrupted during transmission. Each constructed speech vector is multi-dimensional and includes associated features. After waiting for a predetermined time, speech vectors are generated and potentially corrupted features within the speech vector are indicated to the speech recognizer when present. Speech recognition is attempted at the speech recognizer on the speech vectors when corrupted features are present. This recognition may be based only on certain or valid features within each speech vector. Retransmission of a missing or corrupted packet is requested when corrupted values are indicated by the indicating step and when the attempted recognition step fails.
摘要:
A system and a method are provided. A speech recognition processor receives unconstrained input speech and outputs a string of words. The speech recognition processor is based on a numeric language that represents a subset of a vocabulary. The subset includes a set of words identified as being for interpreting and understanding number strings. A numeric understanding processor contains classes of rules for converting the string of words into a sequence of digits. The speech recognition processor utilizes an acoustic model database. A validation database stores a set of valid sequences of digits. A string validation processor outputs validity information based on a comparison of a sequence of digits output by the numeric understanding processor with valid sequences of digits in the validation database.
摘要:
Recognizing a stream of speech received as speech vectors over a lossy communications link includes constructing for a speech recognizer a series of speech vectors from packets received over a lossy packetized transmission link, wherein some of the packets associated with each speech vector are lost or corrupted during transmission. Each constructed speech vector is multi-dimensional and includes associated features. After waiting for a predetermined time, speech vectors are generated and potentially corrupted features within the speech vector are indicated to the speech recognizer when present. Speech recognition is attempted at the speech recognizer on the speech vectors when corrupted features are present. This recognition may be based only on certain or valid features within each speech vector. Retransmission of a missing or corrupted packet is requested when corrupted values are indicated by the indicating step and when the attempted recognition step fails.
摘要:
Systems and methods for annotating speech data. The present invention reduces the time required to annotate speech data by selecting utterances for annotation that will be of greatest benefit. A selection module uses speech models, including speech recognition models and spoken language understanding models, to identify utterances that should be annotated based on criteria such as confidence scores generated by the models. These utterances are placed in an annotation list along with a type of annotation to be performed for the utterances and an order in which the annotation should proceed. The utterances in the annotation list can be annotated for speech recognition purposes, spoken language understanding purposes, labeling purposes, etc. The selection module can also select utterances for annotation based on previously annotated speech data and deficiencies in the various models.
摘要:
A method of generating a natural language model for use in a spoken dialog system is disclosed. The method comprises using sample utterances and creating a number of hand crafted rules for each call-type defined in a labeling guide. A first NLU model is generated and tested using the hand crafted rules and sample utterances. A second NLU model is built using the sample utterances as new training data and using the hand crafted rules. The second NLU model is tested for performance using a first batch of labeled data. A series of NLU models are built by adding a previous batch of labeled data to training data and using a new batch of labeling data as test data to generate the series of NLU models with training data that increases constantly. If not all the labeling data is received, the method comprises repeating the step of building a series of NLU models until all labeling data is received. After all the training data is received, at least once, the method comprises building a third NLU model using all the labeling data, wherein the third NLU model is used in generating the spoken dialog service.
摘要:
An active labeling process is provided that aims to minimize the number of utterances to be checked again by automatically selecting the ones that are likely to be erroneous or inconsistent with the previously labeled examples. In one embodiment, the errors and inconsistencies are identified based on the confidences obtained from a previously trained classifier model. In a second embodiment, the errors and inconsistencies are identified based on an unsupervised learning process. In both embodiments, the active labeling process is not dependent upon the particular classifier model.
摘要:
Systems and methods for monitoring labelers of speech data. To test or train labelers, a labeler is presented with utterances that have already been identified as belonging to a particular class or call type. The labeler is asked to assign a call type to the utterances. The performance of the labeler is measured by comparing the call types assigned by the labeler with the existing call types of the utterances. The performance of a labeler can also be monitored as the labeler labels speech data by occasionally having the labeler label an utterance that is already labeled and by storing the results.
摘要:
Recognizing a stream of speech received as speech vectors over a lossy communications link includes constructing for a speech recognizer a series of speech vectors from packets received over a lossy packetized transmission link, wherein some of the packets associated with each speech vector are lost or corrupted during transmission. Each constructed speech vector is multi-dimensional and includes associated features. Potentially corrupted features within the speech vector are indicated to the speech recognizer when present. Speech recognition is attempted at the speech recognizer on the speech vectors when corrupted features are present. This recognition may be based only on certain or valid features within each speech vector. Retransmission of a missing or corrupted packet is requested when corrupted values are indicated by the indicating step and when the attempted recognition step fails.
摘要:
Hierarchical signal bias removal (HSBR) signal conditioning uses a codebook constructed from the set of recognition models and is updated as the recognition models are modified during recognition model training. As a result, HSBR signal conditioning and recognition model training are based on the same set of recognition model parameters, which provides significant reduction in recognition error rate for the speech recognition system.